155 research outputs found

    Joint Torque-velocity Pair Based Manipulability for Grasping System

    Get PDF
    This paper provides a new approach of manipulability for general grasping system. While conventional manipulability is analysis in velocity domain and can not include force effect such as gravitational force, the proposing approach can include the force effect to keep grasping. For the purpose, an operation range is introduced. The operation range is for actuator attached with every joint of robot and provides generable joint torque and velocity and their relation (between generating torque/velocity and addable velocity/torque). Using the operation range, we derive manipulability set and measure in velocity domain, including force effect. The proposing method can evaluate not only the performance in velocity domain but also effects of friction, contact state, and external forces, which were not obtained in conventional studies. ©2008 IEEE

    Manipulability Measures taking Necessary Joint Torques for Grasping into consideration

    Get PDF
    This paper presents new manipulability measures to evaluate how much easily the robot manipulates the grasped object, simultaneously taking how much magnitude of joint torque we need to keep grasping into consideration. For the purpose, we use operation range. The operation range is for actuator attached to every joint of robot and provides generable joint torque and velocity and their relation (between generating torque/velocity and addable velocity/torque). While we introduced a manipulability measure using the operation range in our previous paper, it was for a limited class due to large computational effort and we could not evaluate whole space of object velocity and could not consider whole space of external wrench. This paper proposes new manipulability measures which can evaluate whole space of object velocity, taking the effect of external wrench in whole space into consideration. ©2010 IEEE

    A New Approach to Dynamic Modeling of Continuum Robots

    Get PDF
    ABSTRACT In this thesis, a new approach for developing practically realizable dynamic models for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for analyzing the capabilities of continuum manipulators to be employed in various real world applications has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers). It is shown that this model, although an approximation to a continuum structure, can be used to conveniently analyze the dynamics of the arm with suitable tradeoff in accuracy of modeling. This relatively simple model is more plausible to implement in an actual real-time controller when compared to other techniques of modeling continuum arms. Principles of Lagrangian dynamics are used to derive the expressions for the generalized forces in the system. The force exerted by McKibben actuators at different pressure level - length pairs is characterized and is incorporated into this dynamic model. The constraints introduced in the analytical model conform to the physical and operational limitations of the Octarm VI continuum robot manipulator. The model is validated by comparing the results of numerical simulation with the physical measurements of a continuum arm prototype built using McKibben actuators. Based on the new lumped parameter dynamic model developed for continuum robots, a technique for deducing measures of manipulability, forces and impacts that can be sustained or imparted by the tip of a continuum robot has been developed. These measures are represented in the form of ellipsoids whose volume and orientation gives information about the various functional capabilities (end effector velocities, forces and impacts) of the arm at a particular configuration. The above mentioned ellipsoids are exemplified for different configurations of the continuum section arm and their physical significances are analyzed. The new techniques proposed and methodologies adopted in this thesis supported by experimental results represent a significant contribution to the field of continuum robots

    Multi-robot cooperative platform : a task-oriented teleoperation paradigm

    Get PDF
    This thesis proposes the study and development of a teleoperation system based on multi-robot cooperation under the task oriented teleoperation paradigm: Multi-Robot Cooperative Paradigm, MRCP. In standard teleoperation, the operator uses the master devices to control the remote slave robot arms. These arms reproduce the desired movements and perform the task. With the developed work, the operator can virtually manipulate an object. MRCP automatically generates the arms orders to perform the task. The operator does not have to solve situations arising from possible restrictions that the slave arms may have. The research carried out is therefore aimed at improving the accuracy teleoperation tasks in complex environments, particularly in the field of robot assisted minimally invasive surgery. This field requires patient safety and the workspace entails many restrictions to teleoperation. MRCP can be defined as a platform composed of several robots that cooperate automatically to perform a teleoperated task, creating a robotic system with increased capacity (workspace volume, accessibility, dexterity ...). The cooperation is based on transferring the task between robots when necessary to enable a smooth task execution. The MRCP control evaluates the suitability of each robot to continue with the ongoing task and the optimal time to execute a task transfer between the current selected robot and the best candidate to continue with the task. From the operator¿s point of view, MRCP provides an interface that enables the teleoperation though the task-oriented paradigm: operator orders are translated into task actions instead of robot orders. This thesis is structured as follows: The first part is dedicated to review the current solutions in the teleoperation of complex tasks and compare them with those proposed in this research. The second part of the thesis presents and reviews in depth the different evaluation criteria to determine the suitability of each robot to continue with the execution of a task, considering the configuration of the robots and emphasizing the criterion of dexterity and manipulability. The study reviews the different required control algorithms to enable the task oriented telemanipulation. This proposed teleoperation paradigm is transparent to the operator. Then, the Thesis presents and analyses several experimental results using MRCP in the field of minimally invasive surgery. These experiments study the effectiveness of MRCP in various tasks requiring the cooperation of two hands. A type task is used: a suture using minimally invasive surgery technique. The analysis is done in terms of execution time, economy of movement, quality and patient safety (potential damage produced by undesired interaction between the tools and the vital tissues of the patient). The final part of the thesis proposes the implementation of different virtual aids and restrictions (guided teleoperation based on haptic visual and audio feedback, protection of restricted workspace regions, etc.) using the task oriented teleoperation paradigm. A framework is defined for implementing and applying a basic set of virtual aids and constraints within the framework of a virtual simulator for laparoscopic abdominal surgery. The set of experiments have allowed to validate the developed work. The study revealed the influence of virtual aids in the learning process of laparoscopic techniques. It has also demonstrated the improvement of learning curves, which paves the way for its implementation as a methodology for training new surgeons.Aquesta tesi doctoral proposa l'estudi i desenvolupament d'un sistema de teleoperació basat en la cooperació multi-robot sota el paradigma de la teleoperació orientada a tasca: Multi-Robot Cooperative Paradigm, MRCP. En la teleoperació clàssica, l'operador utilitza els telecomandaments perquè els braços robots reprodueixin els seus moviments i es realitzi la tasca desitjada. Amb el treball realitzat, l'operador pot manipular virtualment un objecte i és mitjançant el MRCP que s'adjudica a cada braç les ordres necessàries per realitzar la tasca, sense que l'operador hagi de resoldre les situacions derivades de possibles restriccions que puguin tenir els braços executors. La recerca desenvolupada està doncs orientada a millorar la teleoperació en tasques de precisió en entorns complexos i, en particular, en el camp de la cirurgia mínimament invasiva assistida per robots. Aquest camp imposa condicions de seguretat del pacient i l'espai de treball comporta moltes restriccions a la teleoperació. MRCP es pot definir com a una plataforma formada per diversos robots que cooperen de forma automàtica per dur a terme una tasca teleoperada, generant un sistema robòtic amb capacitats augmentades (volums de treball, accessibilitat, destresa,...). La cooperació es basa en transferir la tasca entre robots a partir de determinar quin és aquell que és més adequat per continuar amb la seva execució i el moment òptim per realitzar la transferència de la tasca entre el robot actiu i el millor candidat a continuar-la. Des del punt de vista de l'operari, MRCP ofereix una interfície de teleoperació que permet la realització de la teleoperació mitjançant el paradigma d'ordres orientades a la tasca: les ordres es tradueixen en accions sobre la tasca en comptes d'estar dirigides als robots. Aquesta tesi està estructurada de la següent manera: Primerament es fa una revisió de l'estat actual de les diverses solucions desenvolupades actualment en el camp de la teleoperació de tasques complexes, comparant-les amb les proposades en aquest treball de recerca. En el segon bloc de la tesi es presenten i s'analitzen a fons els diversos criteris per determinar la capacitat de cada robot per continuar l'execució d'una tasca, segons la configuració del conjunt de robots i fent especial èmfasi en el criteri de destresa i manipulabilitat. Seguint aquest estudi, es presenten els diferents processos de control emprats per tal d'assolir la telemanipulació orientada a tasca de forma transparent a l'operari. Seguidament es presenten diversos resultats experimentals aplicant MRCP al camp de la cirurgia mínimament invasiva. En aquests experiments s'estudia l'eficàcia de MRCP en diverses tasques que requereixen de la cooperació de dues mans. S'ha escollit una tasca tipus: sutura amb tècnica de cirurgia mínimament invasiva. L'anàlisi es fa en termes de temps d'execució, economia de moviment, qualitat i seguretat del pacient (potencials danys causats per la interacció no desitjada entre les eines i els teixits vitals del pacient). Finalment s'ha estudiat l'ús de diferents ajudes i restriccions virtuals (guiat de la teleoperació via retorn hàptic, visual o auditiu, protecció de regions de l'espai de treball, etc) dins el paradigma de teleoperació orientada a tasca. S'ha definint un marc d'aplicació base i implementant un conjunt de restriccions virtuals dins el marc d'un simulador de cirurgia laparoscòpia abdominal. El conjunt d'experiments realitzats han permès validar el treball realitzat. Aquest estudi ha permès determinar la influencia de les ajudes virtuals en el procés d'aprenentatge de les tècniques laparoscòpiques. S'ha evidenciat una millora en les corbes d'aprenentatge i obre el camí a la seva implantació com a metodologia d'entrenament de nous cirurgians.Postprint (published version

    Autonomous Underwater Intervention: Experimental Results of the MARIS Project

    Get PDF
    open11noopenSimetti, E. ;Wanderlingh, F. ;Torelli, S. ;Bibuli, M. ;Odetti, A. ;Bruzzone, G. ; Lodi Rizzini, D. ;Aleotti, J. ;Palli, G. ;Moriello, L. ;Scarcia, U.Simetti, E.; Wanderlingh, F.; Torelli, S.; Bibuli, M.; Odetti, Angelo; Bruzzone, G.; Lodi Rizzini, D.; Aleotti, J.; Palli, G.; Moriello, L.; Scarcia, U

    Planning and control of robotic manipulation actions for extreme environments

    Get PDF
    A large societal and economic need arises for advanced robotic capabilities, where we need to perform complex human-like tasks such as tool-use, in environments that are hazardous for human workers. This thesis addresses a collection of problems, which arise when robotic manipulators must perform complex tasks in cluttered and constrained environments. The work is illustrated by example scenarios of robotic tool use, grasping and manipulating, motivated by the challenges of dismantling operations in the extreme environments of nuclear decommissioning Contrary to popular assumptions, legacy nuclear facilities (which can date back three-quarters of a century in the UK) can be highly unstructured and uncertain environments, with insufficient a-priori information available for e.g. conventional pre-programming of robot tasks. Meanwhile, situational awareness and direct teleoperation can be extremely difficult for human operators working in a safe zone that is physically remote from the robot. This engenders a need for significant autonomous capabilities. Robots must use vision and sensory systems to perceive their environment, plan and execute complex actions on complex objects in cluttered and constrained environments. Significant radiation, of different types and intensities, provides further challenges in terms of sensor noise. Perception uncertainty can also result from e.g. vision systems observing shiny featureless metal structures. Robotic actions therefore need to be: i) planned in ways that are robust to uncertainties; and ii) controlled in ways which enable the robust reaction to disturbances. In particular, we investigate motion planning and control in tasks where the robot must: maintain contact while moving over arbitrarily shaped surfaces with end-effector tools; exert forces and withstand perturbations during forceful contact actions; while also avoiding collisions with obstacles; avoiding singularity configurations; and increasing robustness by maximising manipulability during task execution. Furthermore, we consider the issues of robust planning and control with respect to uncertain information, derived from noisy sensors in challenging environments. We explore the Riemannian geometry and robot's manipulability to yield path planners that produce paths for both fixed-based and floating-based robots, whose tools always stay in contact with the object's surface. Our planners overcome disturbances in the perception and account for robot/environment interactions that may demand unexpected forces. The task execution is entrusted to a hybrid force/motion controller whose motion space behaves with compliance to accommodate unexpected stiffness changes throughout the contact. We examine the problem of grasping a tool for performing a task. Firstly, we introduce a method for selecting the grasp candidate onto an object yielding collision-free motion for the robot in the post-grasp movements. Furthermore, we study the case of a dual-arm robot performing full-force tasks on an object and slippage on the grasping is allowed. We account for the slippage throughout the task execution using a novel controller based on the sliding mode controllers

    把持システムのための関節トルク・速度対ベースド可操作性

    Get PDF
    This paper provides a new approach of manipulability for general grasping system. While conventional manipulability is the analysis in velocity domain and can not include force effect such as gravitational force, the proposing approach can include the force effect to keep grasping. For the purpose, an operation range is introduced. The operation range is for actuator attached with every joint of robot and provides generable joint torque and velocity and their relation (between generating torque/velocity and addable velocity/torque). Using the operation range, we derive manipulability set and measure in velocity domain, including force effect. The proposing method can evaluate not only the performance in velocity domain but also effects of friction, contact state, and external forces, which were not obtained in conventional studies

    Bimanual robot skills: MP encoding, dimensionality reduction and reinforcement learning

    Get PDF
    Aplicat embargament des de la data de defensa fins 1/7/2018Premio a la mejor Tesis Doctoral sobre Robótica, Edición 2017, atorgat pel Comité Español de Automática.Finalista del 2018 George Girault PhD Award, from EuRoboticsIn our culture, robots have been in novels and cinema for a long time, but it has been specially in the last two decades when the improvements in hardware - better computational power and components - and advances in Artificial Intelligence (AI), have allowed robots to start sharing spaces with humans. Such situations require, aside from ethical considerations, robots to be able to move with both compliance and precision, and learn at different levels, such as perception, planning, and motion, being the latter the focus of this work. The first issue addressed in this thesis is inverse kinematics for redundant robot manipulators, i.e: positioning the robot joints so as to reach a certain end-effector pose. We opt for iterative solutions based on the inversion of the kinematic Jacobian of a robot, and propose to filter and limit the gains in the spectral domain, while also unifying such approach with a continuous, multipriority scheme. Such inverse kinematics method is then used to derive manipulability in the whole workspace of an antropomorphic arm, and the coordination of two arms is subsequently optimized by finding their best relative positioning. Having solved the kinematic issues, a robot learning within a human environment needs to move compliantly, with limited amount of force, in order not to harm any humans or cause any damage, while being as precise as possible. Therefore, we developed two dynamic models for the same redundant arm we had analysed kinematically: The first based on local models with Gaussian projections, and the second characterizing the most problematic term of the dynamics, namely friction. Such models allowed us to implement feed-forward controllers, where we can actively change the weights in the compliance-precision tradeoff. Moreover, we used such models to predict external forces acting on the robot, without the use of force sensors. Afterwards, we noticed that bimanual robots must coordinate their components (or limbs) and be able to adapt to new situations with ease. Over the last decade, a number of successful applications for learning robot motion tasks have been published. However, due to the complexity of a complete system including all the required elements, most of these applications involve only simple robots with a large number of high-end technology sensors, or consist of very simple and controlled tasks. Using our previous framework for kinematics and control, we relied on two types of movement primitives to encapsulate robot motion. Such movement primitives are very suitable for using reinforcement learning. In particular, we used direct policy search, which uses the motion parametrization as the policy itself. In order to improve the learning speed in real robot applications, we generalized a policy search algorithm to give some importance to samples yielding a bad result, and we paid special attention to the dimensionality of the motion parametrization. We reduced such dimensionality with linear methods, using the rewards obtained through motion repetition and execution. We tested such framework in a bimanual task performed by two antropomorphic arms, such as the folding of garments, showing how a reduced dimensionality can provide qualitative information about robot couplings and help to speed up the learning of tasks when robot motion executions are costly.A la nostra cultura, els robots han estat presents en novel·les i cinema des de fa dècades, però ha sigut especialment en les últimes dues quan les millores en hardware (millors capacitats de còmput) i els avenços en intel·ligència artificial han permès que els robots comencin a compartir espais amb els humans. Aquestes situacions requereixen, a banda de consideracions ètiques, que els robots siguin capaços de moure's tant amb suavitat com amb precisió, i d'aprendre a diferents nivells, com són la percepció, planificació i moviment, essent l'última el centre d'atenció d'aquest treball. El primer problema adreçat en aquesta tesi és la cinemàtica inversa, i.e.: posicionar les articulacions del robot de manera que l'efector final estigui en una certa posició i orientació. Hem estudiat el camp de les solucions iteratives, basades en la inversió del Jacobià cinemàtic d'un robot, i proposem un filtre que limita els guanys en el seu domini espectral, mentre també unifiquem tal mètode dins un esquema multi-prioritat i continu. Aquest mètode per a la cinemàtica inversa és usat a l'hora d'encapsular tota la informació sobre l'espai de treball d'un braç antropomòrfic, i les capacitats de coordinació entre dos braços són optimitzades, tot trobant la seva millor posició relativa en l'espai. Havent resolt les dificultats cinemàtiques, un robot que aprèn en un entorn humà necessita moure's amb suavitat exercint unes forces limitades per tal de no causar danys, mentre es mou amb la màxima precisió possible. Per tant, hem desenvolupat dos models dinàmics per al mateix braç robòtic redundant que havíem analitzat des del punt de vista cinemàtic: El primer basat en models locals amb projeccions de Gaussianes i el segon, caracteritzant el terme més problemàtic i difícil de representar de la dinàmica, la fricció. Aquests models ens van permetre utilitzar controladors coneguts com "feed-forward", on podem canviar activament els guanys buscant l'equilibri precisió-suavitat que més convingui. A més, hem usat aquests models per a inferir les forces externes actuant en el robot, sense la necessitat de sensors de força. Més endavant, ens hem adonat que els robots bimanuals han de coordinar els seus components (braços) i ser capaços d'adaptar-se a noves situacions amb facilitat. Al llarg de l'última dècada, diverses aplicacions per aprendre tasques motores robòtiques amb èxit han estat publicades. No obstant, degut a la complexitat d'un sistema complet que inclogui tots els elements necessaris, la majoria d'aquestes aplicacions consisteixen en robots més aviat simples amb costosos sensors d'última generació, o a resoldre tasques senzilles en un entorn molt controlat. Utilitzant el nostre treball en cinemàtica i control, ens hem basat en dos tipus de primitives de moviment per caracteritzar la motricitat robòtica. Aquestes primitives de moviment són molt adequades per usar aprenentatge per reforç. En particular, hem usat la búsqueda directa de la política, un camp de l'aprenentatge per reforç que usa la parametrització del moviment com la pròpia política. Per tal de millorar la velocitat d'aprenentatge en aplicacions amb robots reals, hem generalitzat un algoritme de búsqueda directa de política per a donar importància a les mostres amb mal resultat, i hem donat especial atenció a la reducció de dimensionalitat en la parametrització dels moviments. Hem reduït la dimensionalitat amb mètodes lineals, utilitzant les recompenses obtingudes EN executar els moviments. Aquests mètodes han estat provats en tasques bimanuals com són plegar roba, usant dos braços antropomòrfics. Els resultats mostren com la reducció de dimensionalitat pot aportar informació qualitativa d'una tasca, i al mateix temps ajuda a aprendre-la més ràpid quan les execucions amb robots reals són costoses.Award-winningPostprint (published version

    Bimanual robot skills: MP encoding, dimensionality reduction and reinforcement learning

    Get PDF
    In our culture, robots have been in novels and cinema for a long time, but it has been specially in the last two decades when the improvements in hardware - better computational power and components - and advances in Artificial Intelligence (AI), have allowed robots to start sharing spaces with humans. Such situations require, aside from ethical considerations, robots to be able to move with both compliance and precision, and learn at different levels, such as perception, planning, and motion, being the latter the focus of this work. The first issue addressed in this thesis is inverse kinematics for redundant robot manipulators, i.e: positioning the robot joints so as to reach a certain end-effector pose. We opt for iterative solutions based on the inversion of the kinematic Jacobian of a robot, and propose to filter and limit the gains in the spectral domain, while also unifying such approach with a continuous, multipriority scheme. Such inverse kinematics method is then used to derive manipulability in the whole workspace of an antropomorphic arm, and the coordination of two arms is subsequently optimized by finding their best relative positioning. Having solved the kinematic issues, a robot learning within a human environment needs to move compliantly, with limited amount of force, in order not to harm any humans or cause any damage, while being as precise as possible. Therefore, we developed two dynamic models for the same redundant arm we had analysed kinematically: The first based on local models with Gaussian projections, and the second characterizing the most problematic term of the dynamics, namely friction. Such models allowed us to implement feed-forward controllers, where we can actively change the weights in the compliance-precision tradeoff. Moreover, we used such models to predict external forces acting on the robot, without the use of force sensors. Afterwards, we noticed that bimanual robots must coordinate their components (or limbs) and be able to adapt to new situations with ease. Over the last decade, a number of successful applications for learning robot motion tasks have been published. However, due to the complexity of a complete system including all the required elements, most of these applications involve only simple robots with a large number of high-end technology sensors, or consist of very simple and controlled tasks. Using our previous framework for kinematics and control, we relied on two types of movement primitives to encapsulate robot motion. Such movement primitives are very suitable for using reinforcement learning. In particular, we used direct policy search, which uses the motion parametrization as the policy itself. In order to improve the learning speed in real robot applications, we generalized a policy search algorithm to give some importance to samples yielding a bad result, and we paid special attention to the dimensionality of the motion parametrization. We reduced such dimensionality with linear methods, using the rewards obtained through motion repetition and execution. We tested such framework in a bimanual task performed by two antropomorphic arms, such as the folding of garments, showing how a reduced dimensionality can provide qualitative information about robot couplings and help to speed up the learning of tasks when robot motion executions are costly.A la nostra cultura, els robots han estat presents en novel·les i cinema des de fa dècades, però ha sigut especialment en les últimes dues quan les millores en hardware (millors capacitats de còmput) i els avenços en intel·ligència artificial han permès que els robots comencin a compartir espais amb els humans. Aquestes situacions requereixen, a banda de consideracions ètiques, que els robots siguin capaços de moure's tant amb suavitat com amb precisió, i d'aprendre a diferents nivells, com són la percepció, planificació i moviment, essent l'última el centre d'atenció d'aquest treball. El primer problema adreçat en aquesta tesi és la cinemàtica inversa, i.e.: posicionar les articulacions del robot de manera que l'efector final estigui en una certa posició i orientació. Hem estudiat el camp de les solucions iteratives, basades en la inversió del Jacobià cinemàtic d'un robot, i proposem un filtre que limita els guanys en el seu domini espectral, mentre també unifiquem tal mètode dins un esquema multi-prioritat i continu. Aquest mètode per a la cinemàtica inversa és usat a l'hora d'encapsular tota la informació sobre l'espai de treball d'un braç antropomòrfic, i les capacitats de coordinació entre dos braços són optimitzades, tot trobant la seva millor posició relativa en l'espai. Havent resolt les dificultats cinemàtiques, un robot que aprèn en un entorn humà necessita moure's amb suavitat exercint unes forces limitades per tal de no causar danys, mentre es mou amb la màxima precisió possible. Per tant, hem desenvolupat dos models dinàmics per al mateix braç robòtic redundant que havíem analitzat des del punt de vista cinemàtic: El primer basat en models locals amb projeccions de Gaussianes i el segon, caracteritzant el terme més problemàtic i difícil de representar de la dinàmica, la fricció. Aquests models ens van permetre utilitzar controladors coneguts com "feed-forward", on podem canviar activament els guanys buscant l'equilibri precisió-suavitat que més convingui. A més, hem usat aquests models per a inferir les forces externes actuant en el robot, sense la necessitat de sensors de força. Més endavant, ens hem adonat que els robots bimanuals han de coordinar els seus components (braços) i ser capaços d'adaptar-se a noves situacions amb facilitat. Al llarg de l'última dècada, diverses aplicacions per aprendre tasques motores robòtiques amb èxit han estat publicades. No obstant, degut a la complexitat d'un sistema complet que inclogui tots els elements necessaris, la majoria d'aquestes aplicacions consisteixen en robots més aviat simples amb costosos sensors d'última generació, o a resoldre tasques senzilles en un entorn molt controlat. Utilitzant el nostre treball en cinemàtica i control, ens hem basat en dos tipus de primitives de moviment per caracteritzar la motricitat robòtica. Aquestes primitives de moviment són molt adequades per usar aprenentatge per reforç. En particular, hem usat la búsqueda directa de la política, un camp de l'aprenentatge per reforç que usa la parametrització del moviment com la pròpia política. Per tal de millorar la velocitat d'aprenentatge en aplicacions amb robots reals, hem generalitzat un algoritme de búsqueda directa de política per a donar importància a les mostres amb mal resultat, i hem donat especial atenció a la reducció de dimensionalitat en la parametrització dels moviments. Hem reduït la dimensionalitat amb mètodes lineals, utilitzant les recompenses obtingudes EN executar els moviments. Aquests mètodes han estat provats en tasques bimanuals com són plegar roba, usant dos braços antropomòrfics. Els resultats mostren com la reducció de dimensionalitat pot aportar informació qualitativa d'una tasca, i al mateix temps ajuda a aprendre-la més ràpid quan les execucions amb robots reals són costoses
    corecore