19 research outputs found

    Graphical models for visual object recognition and tracking

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 277-301).We develop statistical methods which allow effective visual detection, categorization, and tracking of objects in complex scenes. Such computer vision systems must be robust to wide variations in object appearance, the often small size of training databases, and ambiguities induced by articulated or partially occluded objects. Graphical models provide a powerful framework for encoding the statistical structure of visual scenes, and developing corresponding learning and inference algorithms. In this thesis, we describe several models which integrate graphical representations with nonparametric statistical methods. This approach leads to inference algorithms which tractably recover high-dimensional, continuous object pose variations, and learning procedures which transfer knowledge among related recognition tasks. Motivated by visual tracking problems, we first develop a nonparametric extension of the belief propagation (BP) algorithm. Using Monte Carlo methods, we provide general procedures for recursively updating particle-based approximations of continuous sufficient statistics. Efficient multiscale sampling methods then allow this nonparametric BP algorithm to be flexibly adapted to many different applications.(cont.) As a particular example, we consider a graphical model describing the hand's three-dimensional (3D) structure, kinematics, and dynamics. This graph encodes global hand pose via the 3D position and orientation of several rigid components, and thus exposes local structure in a high-dimensional articulated model. Applying nonparametric BP, we recover a hand tracking algorithm which is robust to outliers and local visual ambiguities. Via a set of latent occupancy masks, we also extend our approach to consistently infer occlusion events in a distributed fashion. In the second half of this thesis, we develop methods for learning hierarchical models of objects, the parts composing them, and the scenes surrounding them. Our approach couples topic models originally developed for text analysis with spatial transformations, and thus consistently accounts for geometric constraints. By building integrated scene models, we may discover contextual relationships, and better exploit partially labeled training images. We first consider images of isolated objects, and show that sharing parts among object categories improves accuracy when learning from few examples.(cont.) Turning to multiple object scenes, we propose nonparametric models which use Dirichlet processes to automatically learn the number of parts underlying each object category, and objects composing each scene. Adapting these transformed Dirichlet processes to images taken with a binocular stereo camera, we learn integrated, 3D models of object geometry and appearance. This leads to a Monte Carlo algorithm which automatically infers 3D scene structure from the predictable geometry of known object categories.by Erik B. Sudderth.Ph.D

    Representing and Inferring Visual Perceptual Skills in Dermatological Image Understanding

    Get PDF
    Experts have a remarkable capability of locating, perceptually organizing, identifying, and categorizing objects in images specific to their domains of expertise. Eliciting and representing their visual strategies and some aspects of domain knowledge will benefit a wide range of studies and applications. For example, image understanding may be improved through active learning frameworks by transferring human domain knowledge into image-based computational procedures, intelligent user interfaces enhanced by inferring dynamic informational needs in real time, and cognitive processing analyzed via unveiling the engaged underlying cognitive processes. An eye tracking experiment was conducted to collect both eye movement and verbal narrative data from three groups of subjects with different medical training levels or no medical training in order to study perceptual skill. Each subject examined and described 50 photographical dermatological images. One group comprised 11 board-certified dermatologists (attendings), another group was 4 dermatologists in training (residents), and the third group 13 novices (undergraduate students with no medical training). We develop a novel hierarchical probabilistic framework to discover the stereotypical and idiosyncratic viewing behaviors exhibited by the three expertise-specific groups. A hidden Markov model is used to describe each subject\u27s eye movement sequence combined with hierarchical stochastic processes to capture and differentiate the discovered eye movement patterns shared by multiple subjects\u27 eye movement sequences within and among the three expertise-specific groups. Through these patterned eye movement behaviors we are able to elicit some aspects of the domain-specific knowledge and perceptual skill from the subjects whose eye movements are recorded during diagnostic reasoning processes on medical images. Analyzing experts\u27 eye movement patterns provides us insight into cognitive strategies exploited to solve complex perceptual reasoning tasks. Independent experts\u27 annotations of diagnostic conceptual units of thought in the transcribed verbal narratives are time-aligned with discovered eye movement patterns to help interpret the patterns\u27 meanings. By mapping eye movement patterns to thought units, we uncover the relationships between visual and linguistic elements of their reasoning and perceptual processes, and show the manner in which these subjects varied their behaviors while parsing the images

    Video anomaly detection using deep generative models

    Full text link
    Video anomaly detection faces three challenges: a) no explicit definition of abnormality; b) scarce labelled data and c) dependence on hand-crafted features. This thesis introduces novel detection systems using unsupervised generative models, which can address the first two challenges. By working directly on raw pixels, they also bypass the last

    Earth Resources. A continuing bibliography with indexes, issue 34, July 1982

    Get PDF
    This bibliography lists 567 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between April 1, and June 30, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    GSI Scientific Report 2015 / GSI Report 2016-1

    Get PDF
    corecore