4,147 research outputs found

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear

    3D Data Acquisition and Registration using Two Opposing Kinects

    Get PDF

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    In-Home Daily-Life Captioning Using Radio Signals

    Full text link
    This paper aims to caption daily life --i.e., to create a textual description of people's activities and interactions with objects in their homes. Addressing this problem requires novel methods beyond traditional video captioning, as most people would have privacy concerns about deploying cameras throughout their homes. We introduce RF-Diary, a new model for captioning daily life by analyzing the privacy-preserving radio signal in the home with the home's floormap. RF-Diary can further observe and caption people's life through walls and occlusions and in dark settings. In designing RF-Diary, we exploit the ability of radio signals to capture people's 3D dynamics, and use the floormap to help the model learn people's interactions with objects. We also use a multi-modal feature alignment training scheme that leverages existing video-based captioning datasets to improve the performance of our radio-based captioning model. Extensive experimental results demonstrate that RF-Diary generates accurate captions under visible conditions. It also sustains its good performance in dark or occluded settings, where video-based captioning approaches fail to generate meaningful captions. For more information, please visit our project webpage: http://rf-diary.csail.mit.eduComment: ECCV 2020. The first two authors contributed equally to this pape

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance

    mmBody Benchmark: 3D Body Reconstruction Dataset and Analysis for Millimeter Wave Radar

    Full text link
    Millimeter Wave (mmWave) Radar is gaining popularity as it can work in adverse environments like smoke, rain, snow, poor lighting, etc. Prior work has explored the possibility of reconstructing 3D skeletons or meshes from the noisy and sparse mmWave Radar signals. However, it is unclear how accurately we can reconstruct the 3D body from the mmWave signals across scenes and how it performs compared with cameras, which are important aspects needed to be considered when either using mmWave radars alone or combining them with cameras. To answer these questions, an automatic 3D body annotation system is first designed and built up with multiple sensors to collect a large-scale dataset. The dataset consists of synchronized and calibrated mmWave radar point clouds and RGB(D) images in different scenes and skeleton/mesh annotations for humans in the scenes. With this dataset, we train state-of-the-art methods with inputs from different sensors and test them in various scenarios. The results demonstrate that 1) despite the noise and sparsity of the generated point clouds, the mmWave radar can achieve better reconstruction accuracy than the RGB camera but worse than the depth camera; 2) the reconstruction from the mmWave radar is affected by adverse weather conditions moderately while the RGB(D) camera is severely affected. Further, analysis of the dataset and the results shadow insights on improving the reconstruction from the mmWave radar and the combination of signals from different sensors.Comment: ACM Multimedia 2022, Project Page: https://chen3110.github.io/mmbody/index.htm

    Layout Sequence Prediction From Noisy Mobile Modality

    Full text link
    Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics. Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities. Nevertheless, real-world situations often involve obstructed cameras, missed objects, or objects out of sight due to environmental factors, leading to incomplete or noisy trajectories. To overcome these limitations, we propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories. LTrajDiff utilizes sensor data from mobile phones to surmount out-of-sight constraints, albeit introducing new challenges such as modality fusion, noisy data, and the absence of spatial layout and object size information. We employ a denoising diffusion model to predict precise layout sequences from noisy mobile data using a coarse-to-fine diffusion strategy, incorporating the RMS, Siamese Masked Encoding Module, and MFM. Our model predicts layout sequences by implicitly inferring object size and projection status from a single reference timestamp or significantly obstructed sequences. Achieving SOTA results in randomly obstructed experiments and extremely short input experiments, our model illustrates the effectiveness of leveraging noisy mobile data. In summary, our approach offers a promising solution to the challenges faced by layout sequence and trajectory prediction models in real-world settings, paving the way for utilizing sensor data from mobile phones to accurately predict pedestrian bounding box trajectories. To the best of our knowledge, this is the first work that addresses severely obstructed and extremely short layout sequences by combining vision with noisy mobile modality, making it the pioneering work in the field of layout sequence trajectory prediction.Comment: In Proceedings of the 31st ACM International Conference on Multimedia 2023 (MM 23

    Algorithms, Protocols & Systems for Remote Observation Using Networked Robotic Cameras

    Get PDF
    Emerging advances in robotic cameras, long-range wireless networking, and distributed sensors make feasible a new class of hybrid teleoperated/autonomous robotic remote "observatories" that can allow groups of peoples, via the Internet, to observe, record, and index detailed activity occurred in remote site. Equipped with robotic pan-tilt actuation mechanisms and a high-zoom lens, the camera can cover a large region with very high spatial resolution and allows for observation at a distance. High resolution motion panorama is the most nature data representation. We develop algorithms and protocols for high resolution motion panorama. We discover and prove the projection invariance and achieve real time image alignment. We propose a minimum variance based incremental frame alignment algorithm to minimize the accumulation of alignment error in incremental image alignment and ensure the quality of the panorama video over the long run. We propose a Frame Graph based panorama documentation algorithm to manage the large scale data involved in the online panorama video documentation. We propose a on-demand high resolution panorama video-streaming system that allows on-demand sharing of a high-resolution motion panorama and efficiently deals with multiple concurrent spatial-temporal user requests. In conclusion, our research work on high resolution motion panorama have significantly improve the efficiency and accuracy of image alignment, panorama video quality, data organization, and data storage and retrieving in remote observation using networked robotic cameras

    OBLIQUE IMAGES AND DIRECT PHOTOGRAMMETRY WITH A FIXED WING PLATFORM: FIRST TEST AND RESULTS IN HIERAPOLIS OF PHRYGIA (TK)

    Get PDF
    Abstract. The complex archaeological site documentation benefits for a long time now from the aerial point of view and remote sensing methods. Moreover, the recent research on UAV photogrammetry platform equipment and flight planning actively contribute in this sense for a scaling improvement and cost-benefits balance. Frequently, the experiences on articulated topographic profiles in archaeological excavations require not only a multi-sensor approach but also and above all a multiscale one. According to this line, in a general time-cost ration framework, the geometric content of the generated DSMs should be complete of nadir and oblique point of view for the accurate 3D reconstruction of both upstanding buildings and excavations. In the same way, also the radiometric content closely depends on sensor payload quality and is strictly affected by excavation site condition, related to the site material and light. In this research, carried out in the impressive archaeological site of the ancient city of Hierapolis in Phrygia (Turkey) in the autumn 2019 campaign, the main goal was to evaluate and validate the overall performance of a novel UAV fix-wing ultralight platform with onboard GNSS receiver for RTK/PPK processing of cameras positioning and with the possibility of oblique images capturing. The expected contribute in terms of the acquisition, processing time, radiometric enhancement and geometry 3D reconstruction will be explored with preliminary test and outcomes, and with the results of the high-scale DSM and orthoimage generation of the complete Hierapolis site
    • ā€¦
    corecore