82,268 research outputs found

    Robust 2D Joint Sparse Principal Component Analysis with F-Norm Minimization for Sparse Modelling: 2D-RJSPCA

    Full text link
    Β© 2018 IEEE. Principal component analysis (PCA) is widely used methods for dimensionality reduction and Lots of variants have been proposed to improve the robustness of algorithm, however, these methods suffer from the fact that PCA is linear combination which makes it difficult to interpret complex nonlinear data, and sensitive to outliers or cannot extract features consistently, i.e., collectively; PCA may still require measuring all input features. 2DPCA based on 1-norm has been recently used for robust dimensionality reduction in the image domain but still sensitive to noise. In this paper, we introduce robust formation of 2DPCA by centering the data using the optimized mean for two-dimensional joint sparse as well as effectively combining the robustness of 2DPCA and the sparsity-inducing lasso regularization. Optimal mean helps to improve the robustness of joint sparse PCA further. The distance in spatial dimension is measure in F-norm and sum of different datapoint uses 1-norm. 2DR-JSPCA imposes joint sparse constraints on its objective function whereas additional plenty term help to deal with outliers efficiently. Both theoretical and empirical results on six publicly available benchmark datasets shows that Optimal mean 2DR-JSPCA provides better performance for dimensionality reduction as compare to non-sparse (2DPCA and 2DPCA-L1) and sparse (SPCA, JSPCA)

    A sparse decomposition of low rank symmetric positive semi-definite matrices

    Get PDF
    Suppose that A∈RNΓ—NA \in \mathbb{R}^{N \times N} is symmetric positive semidefinite with rank K≀NK \le N. Our goal is to decompose AA into KK rank-one matrices βˆ‘k=1KgkgkT\sum_{k=1}^K g_k g_k^T where the modes {gk}k=1K\{g_{k}\}_{k=1}^K are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where AA is the covariance function and is intractable to solve in general. In this paper, we partition the indices from 1 to NN into several patches and propose to quantify the sparseness of a vector by the number of patches on which it is nonzero, which is called patch-wise sparseness. Our aim is to find the decomposition which minimizes the total patch-wise sparseness of the decomposed modes. We propose a domain-decomposition type method, called intrinsic sparse mode decomposition (ISMD), which follows the "local-modes-construction + patching-up" procedure. The key step in the ISMD is to construct local pieces of the intrinsic sparse modes by a joint diagonalization problem. Thereafter a pivoted Cholesky decomposition is utilized to glue these local pieces together. Optimal sparse decomposition, consistency with different domain decomposition and robustness to small perturbation are proved under the so called regular-sparse assumption (see Definition 1.2). We provide simulation results to show the efficiency and robustness of the ISMD. We also compare the ISMD to other existing methods, e.g., eigen decomposition, pivoted Cholesky decomposition and convex relaxation of sparse principal component analysis [25] and [40]

    eRPCAe^{\text{RPCA}}: Robust Principal Component Analysis for Exponential Family Distributions

    Full text link
    Robust Principal Component Analysis (RPCA) is a widely used method for recovering low-rank structure from data matrices corrupted by significant and sparse outliers. These corruptions may arise from occlusions, malicious tampering, or other causes for anomalies, and the joint identification of such corruptions with low-rank background is critical for process monitoring and diagnosis. However, existing RPCA methods and their extensions largely do not account for the underlying probabilistic distribution for the data matrices, which in many applications are known and can be highly non-Gaussian. We thus propose a new method called Robust Principal Component Analysis for Exponential Family distributions (eRPCAe^{\text{RPCA}}), which can perform the desired decomposition into low-rank and sparse matrices when such a distribution falls within the exponential family. We present a novel alternating direction method of multiplier optimization algorithm for efficient eRPCAe^{\text{RPCA}} decomposition. The effectiveness of eRPCAe^{\text{RPCA}} is then demonstrated in two applications: the first for steel sheet defect detection, and the second for crime activity monitoring in the Atlanta metropolitan area

    Ensemble Joint Sparse Low Rank Matrix Decomposition for Thermography Diagnosis System

    Get PDF
    Composite is widely used in the aircraft industry and it is essential for manufacturers to monitor its health and quality. The most commonly found defects of composite are debonds and delamination. Different inner defects with complex irregular shape is difficult to be diagnosed by using conventional thermal imaging methods. In this paper, an ensemble joint sparse low rank matrix decomposition (EJSLRMD) algorithm is proposed by applying the optical pulse thermography (OPT) diagnosis system. The proposed algorithm jointly models the low rank and sparse pattern by using concatenated feature space. In particular, the weak defects information can be separated from strong noise and the resolution contrast of the defects has significantly been improved. Ensemble iterative sparse modelling are conducted to further enhance the weak information as well as reducing the computational cost. In order to show the robustness and efficacy of the model, experiments are conducted to detect the inner debond on multiple carbon fiber reinforced polymer (CFRP) composites. A comparative analysis is presented with general OPT algorithms. Not withstand above, the proposed model has been evaluated on synthetic data and compared with other low rank and sparse matrix decomposition algorithms

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field
    • …
    corecore