124 research outputs found

    희소인지를 이용한 전송기술 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2019. 2. 심병효.The new wave of the technology revolution, named the fifth wireless systems, is changing our daily life dramatically. These days, unprecedented services and applications such as driverless vehicles and drone-based deliveries, smart cities and factories, remote medical diagnosis and surgery, and artificial intelligence-based personalized assistants are emerging. Communication mechanisms associated with these new applications and services are way different from traditional communications in terms of latency, energy efficiency, reliability, flexibility, and connection density. Since the current radio access mechanism cannot support these diverse services and applications, a new approach to deal with these relentless changes should be introduced. This compressed sensing (CS) paradigm is very attractive alternative to the conventional information processing operations including sampling, sensing, compression, estimation, and detection. To apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. In the last decade, CS techniques have spread rapidly in many applications such as medical imaging, machine learning, radar detection, seismology, computer science, statistics, and many others. Also, various wireless communication applications exploiting the sparsity of a target signal have been studied. Notable examples include channel estimation, interference cancellation, angle estimation, spectrum sensing, and symbol detection. The distinct feature of this work, in contrast to the conventional approaches exploiting naturally acquired sparsity, is to exploit intentionally designed sparsity to improve the quality of the communication systems. In the first part of the dissertation, we study the mapping data information into the sparse signal in downlink systems. We propose an approach, called sparse vector coding (SVC), suited for the short packet transmission. In SVC, since the data information is mapped to the position of sparse vector, whole data packet can be decoded by idenitifying nonzero positions of the sparse vector. From our simulations, we show that the packet error rate of SVC outperforms the conventional channel coding schemes at the URLLC regime. Moreover, we discuss the SVC transmission for the massive MTC access by overlapping multiple SVC-based packets into the same resources. Using the spare vector overlapping and multiuser CS decoding scheme, SVC-based transmission provides robustness against the co-channel interference and also provide comparable performance than other non-orthogonal multiple access (NOMA) schemes. By using the fact that SVC only identifies the support of sparse vector, we extend the SVC transmission without pilot transmission, called pilot-less SVC. Instead of using the support, we further exploit the magnitude of sparse vector for delivering additional information. This scheme is referred to as enhanced SVC. The key idea behind the proposed E-SVC transmission scheme is to transform the small information into a sparse vector and map the side-information into a magnitude of the sparse vector. Metaphorically, E-SVC can be thought as a standing a few poles to the empty table. As long as the number of poles is small enough and the measurements contains enough information to find out the marked cell positions, accurate recovery of E-SVC packet can be guaranteed. In the second part of this dissertation, we turn our attention to make sparsification of the non-sparse signal, especially for the pilot transmission and channel estimation. Unlike the conventional scheme where the pilot signal is transmitted without modification, the pilot signals are sent after the beamforming in the proposed technique. This work is motivated by the observation that the pilot overhead must scale linearly with the number of taps in CIR vector and the number of transmit antennas so that the conventional pilot transmission is not an appropriate option for the IoT devices. Primary goal of the proposed scheme is to minimize the nonzero entries of a time-domain channel vector by the help of multiple antennas at the basestation. To do so, we apply the time-domain sparse precoding, where each precoded channel propagates via fewer tap than the original channel vector. The received channel vector of beamformed pilots can be jointly estimated by the sparse recovery algorithm.5세대 무선통신 시스템의 새로운 기술 혁신은 무인 차량 및 항공기, 스마트 도시 및 공장, 원격 의료 진단 및 수술, 인공 지능 기반 맟춤형 지원과 같은 전례 없는 서비스 및 응용프로그램으로 부상하고 있다. 이러한 새로운 애플리케이션 및 서비스와 관련된 통신 방식은 대기 시간, 에너지 효율성, 신뢰성, 유연성 및 연결 밀도 측면에서 기존 통신과 매우 다르다. 현재의 무선 액세스 방식을 비롯한 종래의 접근법은 이러한 요구 사항을 만족할 수 없기 때문에 최근에 sparse processing과 같은 새로운 접근 방법이 연구되고 있다. 이 새로운 접근 방법은 표본 추출, 감지, 압축, 평가 및 탐지를 포함한 기존의 정보 처리에 대한 효율적인 대체기술로 활용되고 있다. 지난 10년 동안 compressed sensing (CS)기법은 의료영상, 기계학습, 탐지, 컴퓨터 과학, 통계 및 기타 여러 분야에서 빠르게 확산되었다. 또한, 신호의 희소성(sparsity)를 이용하는 CS 기법은 다양한 무선 통신이 연구되었다. 주목할만한 예로는 채널 추정, 간섭 제거, 각도 추정, 및 스펙트럼 감지가 있으며 현재까지 연구는 주어진 신호가 가지고 있는 본래의 희소성에 주목하였으나 본 논문에서는 기존의 접근 방법과 달리 인위적으로 설계된 희소성을 이용하여 통신 시스템의 성능을 향상시키는 방법을 제안한다. 우선 본 논문은 다운링크 전송에서 희소 신호 매핑을 통한 데이터 전송 방법을 제안하며 짧은 패킷 (short packet) 전송에 적합한 CS 접근법을 활용하는 기술을 제안한다. 제안하는 기술인 희소벡터코딩 (sparse vector coding, SVC)은 데이터 정보가 인공적인 희소벡터의 nonzero element의 위치에 매핑하여 전송된 데이터 패킷은 희소벡터의 0이 아닌 위치를 식별함으로 원신호 복원이 가능하다. 분석과 시뮬레이션을 통해 제안하는 SVC 기법의 패킷 오류률은 ultra-reliable and low latency communications (URLLC) 서비스를 지원을 위해 사용되는 채널코딩방식보다 우수한 성능을 보여준다. 또한, 본 논문은 SVC기술을 다음의 세가지 영역으로 확장하였다. 첫째로, 여러 개의 SVC 기반 패킷을 동일한 자원에 겹치게 전송함으로 상향링크에서 대규모 전송을 지원하는 방법을 제안한다. 중첩된 희소벡터를 다중사용자 CS 디코딩 방식을 사용하여 채널 간섭에 강인한 성능을 제공하고 비직교 다중 접속 (NOMA) 방식과 유사한 성능을 제공한다. 둘째로, SVC 기술이 희소 벡터의 support만을 식별한다는 사실을 이용하여 파일럿 전송이 필요없는 pilotless-SVC 전송 방법을 제안한다. 채널 정보가 없는 경우에도 희소 벡터의 support의 크기는 채널의 크기에 비례하기 때문에 pilot없이 복원이 가능하다. 셋째로, 희소벡터의 support의 크기에 추가 정보를 전송함으로 복원 성능을 향상 시키는 enhanced SVC (E-SVC)를 제안한다. 제안된 E-SVC 전송 방식의 핵심 아디디어는 짧은 패킷을 전송되는 정보를 희소 벡터로 변환하고 정보 복원을 보조하는 추가 정보를 희소 벡터의 크기 (magnitude)로 매핑하는 것이다. 마지막으로, SVC 기술을 파일럿 전송에 활용하는 방법을 제안한다. 특히, 채널 추정을 위해 채널 임펄스 응답의 신호를 희소화하는 프리코딩 기법을 제안한다. 파일럿 신호을 프로코딩 없이 전송되는 기존의 방식과 달리, 제안된 기술에서는 파일럿 신호를 빔포밍하여 전송한다. 제안된 기법은 기지국에서 다중 안테나를 활용하여 채널 응답의 0이 아닌 요소를 최소화하는 시간 영역 희소 프리코딩을 적용하였다. 이를 통해 더 적확한 채널 추정을 가능하며 더 적은 파일럿 오버헤드로 채널 추정이 가능하다.Abstract i Contents iv List of Tables viii List of Figures ix 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Three Key Services in 5G systems . . . . . . . . . . . . . . . 2 1.1.2 Sparse Processing in Wireless Communications . . . . . . . . 4 1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . 7 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Sparse Vector Coding for Downlink Ultra-reliable and Low Latency Communications 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 URLLC Service Requirements . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Ultra-High Reliability . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 URLLC Physical Layer in 5G NR . . . . . . . . . . . . . . . . . . . 18 2.3.1 Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Frame Structure and Latency-sensitive Scheduling Schemes . 20 2.3.3 Solutions to the Coexistence Problem . . . . . . . . . . . . . 22 2.4 Short-sized Packet in LTE-Advanced Downlink . . . . . . . . . . . . 24 2.5 Sparse Vector Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 SVC Encoding and Transmission . . . . . . . . . . . . . . . 25 2.5.2 SVC Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3 Identification of False Alarm . . . . . . . . . . . . . . . . . . 33 2.6 SVC Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 36 2.7 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.2 High-order Modulation . . . . . . . . . . . . . . . . . . . . . 49 2.7.3 Diversity Transmission . . . . . . . . . . . . . . . . . . . . . 50 2.7.4 SVC without Pilot . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.5 Threshold to Prevent False Alarm Event . . . . . . . . . . . . 51 2.8 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 52 2.8.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 53 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 Sparse Vector Coding for Uplink Massive Machine-type Communications 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Uplink NOMA transmission for mMTC . . . . . . . . . . . . . . . . 61 3.3 Sparse Vector Coding based NOMA for mMTC . . . . . . . . . . . . 63 3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 Joint Multiuser Decoding . . . . . . . . . . . . . . . . . . . . 66 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Pilot-less Sparse Vector Coding for Short Packet Transmission 72 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Pilot-less Sparse Vector Coding Processing . . . . . . . . . . . . . . 75 4.2.1 SVC Processing with Pilot Symbols . . . . . . . . . . . . . . 75 4.2.2 Pilot-less SVC . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 PL-SVC Decoding in Multiple Basestation Antennas . . . . . 78 4.3 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Joint Analog and Quantized Feedback via Sparse Vector Coding 84 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 System Model for Joint Spase Vector Coding . . . . . . . . . . . . . 86 5.3 Sparse Recovery Algorithm and Performance Analysis . . . . . . . . 90 5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4.1 Linear Interpolation of Sensing Information . . . . . . . . . . 96 5.4.2 Linear Combined Feedback . . . . . . . . . . . . . . . . . . 96 5.4.3 One-shot Packet Transmission . . . . . . . . . . . . . . . . . 96 5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 98 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Sparse Beamforming for Enhanced Mobile Broadband Communications 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1.1 Increase the number of transmit antennas . . . . . . . . . . . 102 6.1.2 2D active antenna system (AAS) . . . . . . . . . . . . . . . . 103 6.1.3 3D channel environment . . . . . . . . . . . . . . . . . . . . 104 6.1.4 RS transmission for CSI acquisition . . . . . . . . . . . . . . 106 6.2 System Design and Standardization of FD-MIMO Systems . . . . . . 107 6.2.1 Deployment scenarios . . . . . . . . . . . . . . . . . . . . . 108 6.2.2 Antenna configurations . . . . . . . . . . . . . . . . . . . . . 108 6.2.3 TXRU architectures . . . . . . . . . . . . . . . . . . . . . . 109 6.2.4 New CSI-RS transmission strategy . . . . . . . . . . . . . . . 112 6.2.5 CSI feedback mechanisms for FD-MIMO systems . . . . . . 114 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.1 Basic System Model . . . . . . . . . . . . . . . . . . . . . . 116 6.3.2 Beamformed Pilot Transmission . . . . . . . . . . . . . . . . 117 6.4 Sparsification of Pilot Beamforming . . . . . . . . . . . . . . . . . . 118 6.4.1 Time-domain System Model without Pilot Beamforming . . . 119 6.4.2 Pilot Beamforming . . . . . . . . . . . . . . . . . . . . . . . 120 6.5 Channel Estimation of Beamformed Pilots . . . . . . . . . . . . . . . 124 6.5.1 Recovery using Multiple Measurement Vector . . . . . . . . . 124 6.5.2 MSE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.6 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 130 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 Conclusion 136 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 139 Abstract (In Korean) 152Docto

    Implementation of New Multiple Access Technique Encoder for 5G Wireless Telecomunication Networks

    Get PDF
    RÉSUMÉ Les exigences de la connectivité mobile massive de différents appareils et de diverses applications déterminent les besoins des prochaines générations de technologies mobiles (5G) afin de surmonter les demandes futures. L'expansion significative de la connectivité et de la densité du trafic caractérisent les besoins de la cinquième génération de réseaux mobiles. Par conséquent, pour la 5G, il est nécessaire d'avoir une densité de connectivité beaucoup plus élevée et une plus grande portée de mobilité, un débit beaucoup plus élevé et une latence beaucoup plus faible. En raison de l'exigence d'une connectivité massive, de nombreuses nouvelles technologies doivent être améliorées: le codage des canaux, la technique d'accès multiple, la modulation et la diversité, etc. Par conséquent, compte tenu de l'environnement 5G, surcoût de signalisation et de la latence devrait être pris en compte [1]. En outre, l'application de la virtualisation des accès sans fil (WAV) devrait également être considérée et, par conséquent, il est également nécessaire de concevoir la plate-forme matérielle prenant en charge les nouvelles normes pour la mise en œuvre des émetteurs-récepteurs virtuels. L'une des nouvelles technologies possibles pour la 5G est l'accès multiple pour améliorer le débit. Par conséquent, au lieu d'OFDMA utilisé dans la norme LTE (4G), l'application d'une nouvelle technique d'accès multiple appelée Sparse Code Multiple Access (SCMA) est investiguée dans cette dissertation. SCMA est une nouvelle technique d'accès multiple non orthogonale du domaine fréquentiel proposée pour améliorer l'efficacité spectrale de l'accès radio sans fil [2]. L'encodage SCMA est l'un des algorithmes les plus simples dans les techniques d'accès multiple qui offre l'opportunité d'expérimenter des méthodes génériques de mise en oeuvre. En outre, la nouvelle méthode d'accès multiple est supposée fournir un débit plus élevé. Le choix du codage SCMA avec moins de complexité pourrait être une approche appropriée. La cible fixée pour cette recherche était d'atteindre un débit d’encodage de plus de 1 Gbps pour le codeur SCMA. Les implémentations de codage SCMA ont été effectuées à la fois en logiciel et en matériel pour permettre de les comparer. Les implémentations logicielles ont été développées avec le langage de programmation C. Parmi plusieurs conceptions, la performance a été améliorée en utilisant différentes méthodes pour augmenter le parallélisme, diminuer la complexité de calcul et par conséquent le temps de traitement.----------ABSTRACT The demands of massive mobile connectivity of different devices and diverse applications at the same time set requirments for next generations of mobile technology (5G). The significant expansion of connectivity and traffic density characterize the requirements of fifth generation mobile. Therefore, in 5G, there is a need to have much higher connectivity density, higher mobility ranges, much higher throughput, and much lower latency. In pursuance of the requirement of massive connectivity, numerous technologies must be improved: channel coding, multiple access technique, modulation and diversity, etc. For instance, with 5G, the cost of signaling overhead and latency should be taken into account [1]. Besides, applying wireless access virtualization (WAV) should be considered and there is also a need to have effective implementations supporting novel virtual transceiver. One of the possible new technologies for 5G is exploiting multiple access techniques to improve throughput. Therefore, instead of OFDMA in LTE (4G), applying a new multiple access technique called Sparse Code Multiple Access (SCMA) is an approach considered in this dissertation. SCMA is a new frequency domain non-orthogonal multiple access technique proposed to improve spectral efficiency of wireless radio access [2]. SCMA encoding is one of the simplest multiple access technique that offers an opportunity to experiment generic implementation methods. In addition, the new multiple access method is supposed to provide higher throughput, thus choosing SCMA encoding with less complexity could be an appropriate approach. The target with SCMA was to achieve an encoding throughput of more that 1Gbps. SCMA encoding implementations were done both in software and hardware to allow comparing them. The software implementations were developed with the C programing language. Among several designs, the performance was improved by using different methods to increase parallelism, decrease the computational complexity and consequently the processing time. The best achieved results with software implementations offer a 3.59 Gbps throughput, which is 3.5 times more that the target. For hardware implementation, high level synthesis was experimented. In order to do that, the C based functions and testbenches which were developed for software implementations, were used as inputs to Vivado HLS

    Signal optimization for Galileo evolution

    Get PDF
    Global Navigation Satellite System (GNSS) are present in our daily lives. Moreover, new users areemerging with further operation needs involving a constant evolution of the current navigationsystems. In the current framework of Galileo (GNSS European system) and especially within theGalileo E1 Open Service (OS), adding a new acquisition aiding signal could contribute to providehigher resilience at the acquisition phase, as well as to reduce the time to first fix (TTFF).Designing a new GNSS signal is always a trade-off between several performance figures of merit.The most relevant are the position accuracy, the sensitivity and the TTFF. However, if oneconsiders that the signal acquisition phase is the goal to design, the sensitivity and the TTFF havea higher relevance. Considering that, in this thesis it is presented the joint design of a GNSS signaland the message structure to propose a new Galileo 2nd generation signal, which provides ahigher sensitivity in the receiver and reduce the TTFF. Several aspects have been addressed inorder to design a new signal component. Firstly, the spreading modulation definition must considerthe radio frequency compatibility in order to cause acceptable level of interference inside the band.Moreover, the spreading modulation should provide good correlation properties and goodresistance against the multipath in order to enhance the receiver sensitivity and to reduce theTTFF. Secondly, the choice of the new PRN code is also crucial in order to ease the acquisitionphase. A simple model criterion based on a weighted cost function is used to evaluate the PRNcodes performance. This weighted cost function takes into account different figures of merit suchas the autocorrelation, the cross-correlation and the power spectral density. Thirdly, the design ofthe channel coding scheme is always connected with the structure of the message. A joint designbetween the message structure and the channel coding scheme can provide both, reducing theTTFF and an enhancement of the resilience of the decoded data. In this this, a new method to codesign the message structure and the channel coding scheme for the new G2G signal isproposed. This method provides the guideline to design a message structure whose the channelcoding scheme is characterized by the full diversity, the Maximum Distance Separable (MDS) andthe rate compatible properties. The channel coding is essential in order to enhance the datademodulation performance, especially in harsh environments. However, this process can be verysensitive to the correct computation of the decoder input. Significant improvements were obtainedby considering soft inputs channel decoders, through the Log Likelihood Ratio LLRs computation.However, the complete knowledge of the channel state information (CSI) was usually considered,which it is infrequently in real scenarios. In this thesis, we provide new methods to compute LLRlinear approximations, under the jamming and the block fading channels, considering somestatistical CSI. Finally, to transmit a new signal in the same carrier frequency and using the sameHigh Power Amplifier (HPA) generates constraints in the multiplexing design, since a constant orquasi constant envelope is needed in order to decrease the non-linear distortions. Moreover, themultiplexing design should provide high power efficiency to not waste the transmitted satellitepower. Considering the precedent, in this thesis, we evaluate different multiplexing methods,which search to integrate a new binary signal in the Galileo E1 band while enhancing thetransmitted power efficiency. Besides that, even if the work is focused on the Galileo E1, many ofthe concepts and methodologies can be easily extended to any GNSS signa

    SCVT : IEEE symposium on communications and vehicular technology in the Benelux : proceedings, 3rd, Eindhoven, October 25-26 1995

    Get PDF
    corecore