212 research outputs found

    Medium Access Control and Routing Protocols Design for 5G

    Get PDF
    In future wireless systems, such as 5G and beyond, the current dominating human-centric communication systems will be complemented by a tremendous increase in the number of smart devices, equipped with radio devices, possibly sensors, and uniquely addressable. This will result in explosion of wireless traffic volume, and consequently exponential growth in demand of radio spectrum. There are different engineering techniques for resolving the cost and scarcity of radio spectrum such as coexistence of diverse devices on the same pool of radio resources, spectrum aggregations, adoption of mmWave bands with huge spectrum, etc. The aim of this thesis is to investigate Medium Access Control (MAC) and routing protocols for 5G and beyond radio networks. Two scenarios are addressed: heterogeneous scenario where scheduled and uncoordinated users coexist, and a scenario where drones are used for monitoring a given area. In the heterogeneous scenario scheduled users are synchronised with the Base Station (BS) and rely on centralised resource scheduler for assignment of time slots, while the uncoordinated users are asynchronous with each other and the BS and rely unslotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) for channel access. First, we address a single-hop network with advanced scheduling algorithm design and packet length adaptation schemes design. Second, we address a multi-hop network with novel routing protocol for enhancing performance of the scheduled users in terms of throughput, and coexistence of all network users. In the drone-based scenario, new routing protocols are designed to address the problems of Wireless Mesh Networks with monitoring drones. In particular, a novel optimised Hybrid Wireless Mesh Protocol (O-HWMP) for a quick and efficient discovery of paths is designed, and a capacity achieving routing and scheduling algorithm, called backpressure, investigated. To improve on the long-end-to-end delays of classical backpressure, a modified backpressure algorithm is proposed and evaluated

    Optimizing resource allocation in next-generation optical access networks

    Get PDF
    To meet rapidly increasing traffic demands caused by the popularization of Internet and the spouting of bandwidth-demanding applications, Passive Optical Networks (PONs) exploit the potential capacities of optical fibers, and are becoming promising future-proof access network technologies. On the other hand, for a broader coverage area and higher data rate, integrated optical and wireless access is becoming a future trend for wireless access. This thesis investigates three next-generation access networks: Time Division Multiplexing (TDM) PONs, Wavelength Division Multiplexing (WDM) PONs, and WDM Radio-Over-Fiber (RoF) Picocellular networks. To address resource allocation problems in these three networks, this thesis first investigates respective characteristics of these networks, and then presents solutions to address respective challenging problems in these networks. In particular, three main problems are addressed: arbitrating time allocation among different applications to guarantee user quality of experience (QoE) in TDM PONs, scheduling wavelengths optimally in WDM PONs, and jointly allocating fiber and radio resources in WDM RoF Picocellular networks. In-depth theoretical analysis and extensive simulations have been performed in evaluating and demonstrating the performances of the proposed schemes

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Scheduling algorithms for throughput maximization in data networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 215-226).This thesis considers the performance implications of throughput optimal scheduling in physically and computationally constrained data networks. We study optical networks, packet switches, and wireless networks, each of which has an assortment of features and constraints that challenge the design decisions of network architects. In this work, each of these network settings are subsumed under a canonical model and scheduling framework. Tools of queueing analysis are used to evaluate network throughput properties, and demonstrate throughput optimality of scheduling and routing algorithms under stochastic traffic. Techniques of graph theory are used to study network topologies having desirable throughput properties. Combinatorial algorithms are proposed for efficient resource allocation. In the optical network setting, the key enabling technology is wavelength division multiplexing (WDM), which allows each optical fiber link to simultaneously carry a large number of independent data streams at high rate. To take advantage of this high data processing potential, engineers and physicists have developed numerous technologies, including wavelength converters, optical switches, and tunable transceivers.(cont.) While the functionality provided by these devices is of great importance in capitalizing upon the WDM resources, a major challenge exists in determining how to configure these devices to operate efficiently under time-varying data traffic. In the WDM setting, we make two main contributions. First, we develop throughput optimal joint WDM reconfiguration and electronic-layer routing algorithms, based on maxweight scheduling. To mitigate the service disruption associated with WDM reconfiguration, our algorithms make decisions at frame intervals. Second, we develop analytic tools to quantify the maximum throughput achievable in general network settings. Our approach is to characterize several geometric features of the maximum region of arrival rates that can be supported in the network. In the packet switch setting, we observe through numerical simulation the attractive throughput properties of a simple maximal weight scheduler. Subsequently, we consider small switches, and analytically demonstrate the attractive throughput properties achievable using maximal weight scheduling. We demonstrate that such throughput properties may not be sustained in larger switches.(cont.) In the wireless network setting, mesh networking is a promising technology for achieving connectivity in local and metropolitan area networks. Wireless access points and base stations adhering to the IEEE 802.11 wireless networking standard can be bought off the shelf at little cost, and can be configured to access the Internet in minutes. With ubiquitous low-cost Internet access perceived to be of tremendous societal value, such technology is naturally garnering strong interest. Enabling such wireless technology is thus of great importance. An important challenge in enabling mesh networks, and many other wireless network applications, results from the fact that wireless transmission is achieved by broadcasting signals through the air, which has the potential for interfering with other parts of the network. Furthermore, the scarcity of wireless transmission resources implies that link activation and packet routing should be effected using simple distributed algorithms. We make three main contributions in the wireless setting. First, we determine graph classes under which simple, distributed, maximal weight schedulers achieve throughput optimality.(cont.) Second, we use this acquired knowledge of graph classes to develop combinatorial algorithms, based on matroids, for allocating channels to wireless links, such that each channel can achieve maximum throughput using simple distributed schedulers. Third, we determine new conditions under which distributed algorithms for joint link activation and routing achieve throughput optimality.by Andrew Brzezinski.Ph.D

    Architectures and protocols for sub-wavelength optical networks: contributions to connectionless and connection-oriented data transport

    Get PDF
    La ràpida evolució d’Internet i l’àmplia gamma de noves aplicacions (per exemple, multimèdia, videoconferència, jocs en línia, etc.) ha fomentat canvis revolucionaris en la manera com ens comuniquem. A més, algunes d’aquestes aplicacions demanden grans quantitats de recursos d’ample de banda amb diversos requeriments de qualitat de servei (QoS). El desenvolupament de la multiplexació per divisió de longitud d’ona (WDM) en els anys noranta va fer molt rendible la disponibilitat d’ample de banda. Avui dia, les tecnologies de commutació òptica de circuits són predominants en el nucli de la xarxa, les quals permeten la configuració de canals (lightpaths) a través de la xarxa. No obstant això, la granularitat d’aquests canals ocupa tota la longitud d’ona, el que fa que siguin ineficients per a proveir canals de menor ample de banda (sub-longitud d’ona). Segons la comunitat científica, és necessari augmentar la transparència dels protocols, així com millorar l’aprovisionament d’ample de banda de forma dinàmica. Per tal de fer això realitat, és necessari desenvolupar noves arquitectures. La commutació òptica de ràfegues i de paquets (OBS/OPS), són dues de les tecnologies proposades. Aquesta tesi contribueix amb tres arquitectures de xarxa destinades a millorar el transport de dades sub-longitud d’ona. En primer lloc, aprofundim en la naturalesa sense connexió en OBS. En aquest cas, la xarxa incrementa el seu dinamisme a causa de les transmissions a ràfega. A més, les col·lisions entre ràfegues degraden el rendiment de la xarxa fins i tot a càrregues molt baixes. Per fer front a aquestes col·lisions, es proposa un esquema de resolució de col·lisions pro actiu basat en un algorisme d’encaminament i assignació de longitud d’ona (RWA) que balanceja de forma automàtica i distribuïda la càrrega en la xarxa. En aquest protocol, el RWA i la transmissió de ràfegues es basen en l’explotació i exploració de regles de commutació que incorporen informació sobre contencions i encaminament. Per donar suport a aquesta arquitectura, s’utilitzen dos tipus de paquets de control per a l’encaminament de les ràfegues i l’actualització de les regles de commutació, respectivament. Per analitzar els beneficis del nou algorisme, s’utilitzen quatre topologies de xarxa diferents. Els resultats indiquen que el mètode proposat millora en diferents marges la resta d’algorismes RWA en funció de la topologia i sense penalitzar altres paràmetres com el retard extrem a extrem. La segona contribució proposa una arquitectura híbrida sense i orientada a connexió sobre la base d’un protocol de control d’accés al medi (MAC) per a xarxes OBS (DAOBS). El MAC ofereix dos mètodes d’accés: arbitratge de cua (QA) per a la transmissió de ràfegues sense connexió, i pre-arbitratge (PA) per serveis TDM orientats a connexió. Aquesta arquitectura permet una àmplia gamma d’aplicacions sensibles al retard i al bloqueig. Els resultats avaluats a través de simulacions mostren que en l’accés QA, les ràfegues de més alta prioritat tenen garantides zero pèrdues i latències d’accés molt baixes. Pel que fa a l’accés PA, es reporta que la duplicació de la càrrega TDM augmenta en més d’un ordre la probabilitat de bloqueig, però sense afectar en la mateixa mesura les ràfegues sense connexió. En aquest capítol també es tracten dos dels problemes relacionats amb l’arquitectura DAOBS i el seu funcionament. En primer lloc, es proposa un model matemàtic per aproximar el retard d’accés inferior i superior com a conseqüència de l’accés QA. En segon lloc, es formula matemàticament la generació i optimització de les topologies virtuals que suporten el protocol per a l’escenari amb tràfic estàtic. Finalment, l’última contribució explora els beneficis d’una arquitectura de xarxa òptica per temps compartit (TSON) basada en elements de càlcul de camins (PCE) centralitzats per tal d’evitar col·lisions en la xarxa. Aquesta arquitectura permet garantir l’aprovisionament orientat a connexió de canals sub-longitud d’ona. En aquest capítol proposem i simulem tres arquitectures GMPLS/PCE/TSON. A causa del enfocament centralitzat, el rendiment de la xarxa depèn en gran mesura de l’assignació i aprovisionament de les connexions. Amb aquesta finalitat, es proposen diferents algorismes d’assignació de ranures temporals i es comparen amb les corresponents formulacions de programació lineal (ILP) per al cas estàtic. Per al cas de tràfic dinàmic, proposem i avaluem mitjançant simulació diferents heurístiques. Els resultats mostren els beneficis de proporcionar flexibilitat en els dominis temporal i freqüencial a l’hora d’assignar les ranures temporals.The rapid evolving Internet and the broad range of new data applications (e.g., multimedia, video-conference, online gaming, etc.) is fostering revolutionary changes in the way we communicate. In addition, some of these applications demand for unprecedented amounts of bandwidth resources with diverse quality of service (QoS). The development of wavelength division multiplexing (WDM) in the 90's made very cost-effective the availability of bandwidth. Nowadays, optical circuit switching technologies are predominant in the core enabling the set up of lightpaths across the network. However, full-wavelength lightpath granularity is too coarse, which results to be inefficient for provisioning sub-wavelength channels. As remarked by the research community, an open issue in optical networking is increasing the protocol transparency as well as provisioning true dynamic bandwidth allocation at the network level. To this end, new architectures are required. Optical burst/packet switching (OBS/OPS) are two such proposed technologies under investigation. This thesis contributes with three network architectures which aim at improving the sub-wavelength data transport from different perspectives. First, we gain insight into the connectionless nature of OBS. Here, the network dynamics are increased due to the short-lived burst transmissions. Moreover, burst contentions degrade the performance even at very low loads. To cope with them, we propose a proactive resolution scheme by means of a distributed auto load-balancing routing and wavelength assignment (RWA) algorithm for wavelength-continuity constraint networks. In this protocol, the RWA and burst forwarding is based on the exploitation and exploration of switching rule concentration values that incorporate contention and forwarding desirability information. To support such architecture, forward and backward control packets are used in the burst forwarding and updating rules, respectively. In order to analyze the benefits of the new algorithm, four different network topologies are used. Results indicate that the proposed method outperforms the rest of tested RWA algorithms at various margins depending on the topology without penalizing other parameters such as end-to-end delay. The second contribution proposes a hybrid connectionless and connection-oriented architecture based on a medium access control (MAC) protocol for OBS networks (DAOBS). The MAC provides two main access mechanisms: queue arbitrated (QA) for connectionless bursts and pre-arbitrated (PA) for TDM connection-oriented services. Such an architecture allows for a broad range of delay-sensitive applications or guaranteed services. Results evaluated through simulations show that in the QA access mode highest priority bursts are guaranteed zero losses and very low access latencies. Regarding the PA mode, we report that doubling the offered TDM traffic load increases in more than one order their connection blocking, slightly affecting the blocking of other connectionless bursts. In this chapter, we also tackle two of the issues related with the DAOBS architecture and its operation. Firstly, we model mathematically the lower and upper approximations of the access delay as a consequence of the connectionless queue arbitrated access. Secondly, we formulate the generation of the virtual light-tree overlay topology for the static traffic case.Postprint (published version

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced
    corecore