172 research outputs found

    A MULTI-ITEM INVENTORY MODEL WITH VARIOUS DEMAND FUNCTIONS CONSIDERING DETERIORATION AND PARTIAL BACKLOGGING

    Get PDF
    Inventory management is an important thing to be considered in order to run the activities of a company smoothly. By considering deterioration factor, partial backlogging policy and different type of demand functions, we develop a mathematical model for multi-item inventory system. In this paper, three inventory models with constant deterioration, partial backlogging, with various demand functions are developed.  We consider inventory-dependent demand, time-dependent demand and exponential demand function in each model.  In addition, we also consider the replenishment policies for those three items, viz. individual replenishment, joint replenishment and combination both individual and joint replenishments. Sensitivity analysis of the models is also performed, and we found that the ordering cost greatly affects the total inventory cost when comparing the available replenishment policies

    Studies on tactical capacity planning with contingent capacities

    Get PDF

    Multi-echelon Inventory Control with Integrated Shipment Decisions

    Get PDF
    Rising fuel prices and increasing environmental awareness emphasizes the importance of the transportation aspect in logistics. This calls for new improved inventory control methods that consider the effects of shipment strategies in a more realistic manner. This thesis, consisting of an introduction and three scientific papers, studies how shipment decisions can be included in the inventory control of distribution systems. The systems studied in the papers consist of a central warehouse that supplies goods to a number of retailers that face stochastic customer demand. The first two papers consider a system where shipments from the central warehouse are consolidated to groups of retailers periodically. This means that replenishment orders of one or several items from different retailers are consolidated and dispatched at certain time intervals. By doing so, transportation cost savings can be realized and emissions can be reduced. This is achieved by filling the vehicles or load carriers to a higher extent and by using cheaper and more environmentally friendly, transportation modes. The first paper explicitly focuses on how to include more realistic transportation costs and emissions. This is done by obtaining the distribution of the size of an arbitrary shipment leaving the central warehouse (directly affected by the shipment frequency). It is thereby easy to evaluate any system where the transportation costs and emissions are dependent on the size of the shipment. The paper also provides a detailed analysis of a system where there is an opportunity to reserve shipment capacity on an intermodal truck-train-truck solution to at least one of the retailer groups. For this system it is shown how to jointly optimize the shipment intervals, the reserved capacities on the intermodal transportation modes and the reorder points in the system. The presented optimization procedure is applicable in three scenarios; (i) the emissions are not considered, (ii) there is a fixed cost per unit of emission, and (iii) there is a constraint on the maximum emissions per time unit. The second paper extends the analysis of a similar time-based shipment consolidation system to handle compound Poisson demand (instead of pure Poisson demand). This system has a simpler transportation cost structure, but the more general demand structure makes the model applicable for a broader array of products. The paper also extends the model to handle fill rate constraints, which further improves the practical applicability. The cost analysis is performed with a new methodology, based on the nominal inventory position. This variable is a helpful tool for analyzing the dynamics of distribution systems. Another system where this tool can be used is studied in the third paper. In this paper all stock points use installation stock (R,Q) ordering policies (batch ordering). This implies that situations can occur when only part of a requested retailer order is available at the central warehouse. The existing literature predominantly assumes that the available units are shipped immediately and the remaining units are shipped as soon as they arrive to the central warehouse, referred to as partial delivery. An alternative is to wait until the entire order is available before dispatching, referred to as complete delivery. The paper introduces a cost for splitting the order and evaluates three delivery policies; the PD policy (only partial deliveries are used), the CD policy (only complete deliveries are used), and the state-dependent MSD policy (an optimization between a partial and a complete delivery is performed for each delivery). The MSD policy is proven to perform better than both the PD and the CD policy. In a numerical study it is shown that significant savings can be made by using the MSD policy

    A two-storage model for deteriorating items with holding cost under inflation and Genetic Algorithms

    Full text link
    A deterministic inventory model has been developed for deteriorating items and Genetic Algorithms (GA) having a ramp type demands with the effects of inflation with two-storage facilities. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited capacity. Here, we assumed that the inventory holding cost in RW is higher than those in OW. Shortages in inventory are allowed and partially backlogged and Genetic Algorithms (GA) it is assumed that the inventory deteriorates over time at a variable deterioration rate. The effect of inflation has also been considered for various costs associated with the inventory system and Genetic Algorithms (GA). Numerical example is also used to study the behaviour of the model. Cost minimization technique is used to get the expressions for total cost and other parameters

    Transshipment Problems in Supply ChainSystems: Review and Extensions

    Get PDF

    Exact Methods for Multi-echelon Inventory Control : Incorporating Shipment Decisions and Detailed Demand Information

    Get PDF
    Recent advances in information technologies and an increased environmental awareness have altered the prerequisites for successful logistics. For companies operating on a global market, inventory control of distribution systems is often an essential part of their logistics planning. In this context, the research objective of this thesis is: To develop exact methods for stochastic inventory control of multi-echelon distribution systems incorporating shipment decisions and/or detailed demand information.The thesis consists of five scientific papers (Paper I, II, III, IV and V) preceded by a summarizing introduction. All papers study systems with a central warehouse supplying a number of non-identical local warehouses (retailers) facing stochastic demand. For given replenishment policies, the papers provide exact expressions for evaluating the expected long-run system behavior (e.g., distributions of backorders, inventory levels, shipment sizes and expected costs) and present optimization procedures for the control variables. Paper I and II consider systems where shipments from the central warehouse are consolidated to groups of retailers and dispatched periodically. By doing so, economies of scale for the transports can be reached, reducing both transportation costs and emissions. Paper I assumes Poisson customer demand and considers volume-dependent transportation costs and emissions. The model involves the possibility to reserve intermodal (train) capacity in combination with truck transports available on demand. For this system, the expected inventory costs, the expected transportation costs and the expected transport emissions are determined. Joint optimization procedures for the shipment intervals, the capacity reservation quantities, the reorder points and order-up-to levels in the system are provided, with or without emission considerations. Paper II analyses the expected costs of the same system for compound Poisson demand (where customer demand sizes may vary), but with only one transportation mode and fixed transportation costs per shipment. It also shows how to handle fill rate constraints. Paper III studies a system where all stock points use installation stock (R,Q) ordering policies (batch ordering). This implies that situations can occur when only part of a requested retailer order is available at the central warehouse. In these situations, the models in existing literature predominantly assume that available units are shipped immediately (partial delivery). An alternative is to wait until the entire order is available before dispatching (complete delivery). The paper introduces a cost for splitting the order and evaluates a system where optimal choices between partial and complete deliveries are made for all orders. In a numerical study it is shown that significant savings can be made by using this policy compared to systems which exclusively use either partial or complete deliveries. Paper IV shows how companies can benefit from detailed information about their customer demand. In a continuous review base stock system, the customer demand is modeled with independent compound renewal processes at the retailers. This means that the customer inter-arrival times may follow any continuous distribution and the demand sizes may follow any discrete distribution. A numerical study shows that this model can achieve substantial savings compared to models using the common assumption of exponential customer inter-arrival times. Paper V is a short technical note that extends the scope of analysis for several existing stochastic multi-echelon inventory models. These models analyze the expected costs without first determining the inventory level distribution. By showing how these distributions can be obtained from the expected cost functions, this note facilitates the analysis of several service measures, including the ready rate and the fill rate

    An Epq Model Having Weibull Distribution Deterioration With Exponential Demand and Production With Shortages Under Permissible Delay In Payments

    Get PDF
    In the fundamental production inventory model, in order to solve the economic production quantity (EPQ) we always fix both the demand quantity and the production quantity per day. But, in the real situation, production is usually dependend on demand. This paper derives a production model for the lot-size inventory system with finite production rate, taking into consideration the effect of decay and the condition of permissible delay in payments. Usually no interest is  charged  if the outstanding amount is settled within the permitted fixed settlement period. Therefore, it makes economic sense for the customer to delay the settlement of the replenishment account up to the last moment of the permissible period allowed by the supplier. In this model shortages are permitted and fully backordered . The purpose of this paper is to investigate a computing schema for the EPQ. The model is illustrated with a numerical example. Keywords Economic production quantity, permissible delay, weibull distribution, deterioration

    Dynamic inventory rationing for systems with multiple demand classes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore