44,429 research outputs found

    Optimal maintenance of multi-component systems: a review

    Get PDF
    In this article we give an overview of the literature on multi-component maintenance optimization. We focus on work appearing since the 1991 survey "A survey of maintenance models for multi-unit systems" by Cho and Parlar. This paper builds forth on the review article by Dekker et al. (1996), which focusses on economic dependence, and the survey of maintenance policies by Wang (2002), in which some group maintenance and some opportunistic maintenance policies are considered. Our classification scheme is primarily based on the dependence between components (stochastic, structural or economic). Next, we also classify the papers on the basis of the planning aspect (short-term vs long-term), the grouping of maintenance activities (either grouping preventive or corrective maintenance, or opportunistic grouping) and the optimization approach used (heuristic, policy classes or exact algorithms). Finally, we pay attention to the applications of the models.literature review;economic dependence;failure interaction;maintenance policies;grouping maintenance;multi-component systems;opportunistic maintenance;maintencance optimization;structural dependence

    An approximate approach for the joint problem of level of repair analysis and spare parts stocking

    Get PDF
    For the spare parts stocking problem, generally METRIC type methods are used in the context of capital goods. A decision is assumed on which components to discard and which to repair upon failure, and where to perform repairs. In the military world, this decision is taken explicitly using the level of repair analysis (LORA). Since the LORA does not consider the availability of the capital goods, solving the LORA and spare parts stocking problems sequentially may lead to suboptimal solutions. Therefore, we propose an iterative algorithm. We compare its performance with that of the sequential approach and a recently proposed, so-called integrated algorithm that finds optimal solutions for twoechelon, single-indenture problems. On a set of such problems, the iterative algorithm turns out to be close to optimal. On a set of multi-echelon, multi-indenture problems, the iterative approach achieves a cost reduction of 3%on average (35%at maximum) as compared to the sequential approach. Its costs are only 0.6 % more than those of the integrated algorithm on average (5 % at maximum). Considering that the integrated algorithm may take a long time without guaranteeing optimality, we believe that the iterative algorithm is a good approach. This result is further strengthened in a case study, which has convinced Thales Nederland to start using the principles behind our algorithm

    Hidden Markov Models and their Application for Predicting Failure Events

    Full text link
    We show how Markov mixed membership models (MMMM) can be used to predict the degradation of assets. We model the degradation path of individual assets, to predict overall failure rates. Instead of a separate distribution for each hidden state, we use hierarchical mixtures of distributions in the exponential family. In our approach the observation distribution of the states is a finite mixture distribution of a small set of (simpler) distributions shared across all states. Using tied-mixture observation distributions offers several advantages. The mixtures act as a regularization for typically very sparse problems, and they reduce the computational effort for the learning algorithm since there are fewer distributions to be found. Using shared mixtures enables sharing of statistical strength between the Markov states and thus transfer learning. We determine for individual assets the trade-off between the risk of failure and extended operating hours by combining a MMMM with a partially observable Markov decision process (POMDP) to dynamically optimize the policy for when and how to maintain the asset.Comment: Will be published in the proceedings of ICCS 2020; @Booklet{EasyChair:3183, author = {Paul Hofmann and Zaid Tashman}, title = {Hidden Markov Models and their Application for Predicting Failure Events}, howpublished = {EasyChair Preprint no. 3183}, year = {EasyChair, 2020}

    Multiobjective Coordination Models For Maintenance And Service Parts Inventory Planning And Control

    Get PDF
    In many equipment-intensive organizations in the manufacturing, service and particularly the defense sectors, service parts inventories constitute a significant source of tactical and operational costs and consume a significant portion of capital investment. For instance, the Defense Logistics Agency manages about 4 million consumable service parts and provides about 93% of all consumable service parts used by the military services. These items required about US1.9billionoverthefiscalyears19992002.Duringthesametime,theUSGeneralAccountabilityOfficediscoveredthat,intheUnitedStatesNavy,therewereabout3.7billionshipandsubmarinepartsthatwerenotneeded.TheFederalAviationAdministrationsaysthat26millionaircraftpartsarechangedeachyear.In2002,theholdingcostofservicepartsfortheaviationindustrywasestimatedtobeUS1.9 billion over the fiscal years 1999-2002. During the same time, the US General Accountability Office discovered that, in the United States Navy, there were about 3.7 billion ship and submarine parts that were not needed. The Federal Aviation Administration says that 26 million aircraft parts are changed each year. In 2002, the holding cost of service parts for the aviation industry was estimated to be US50 billion. The US Army Institute of Land Warfare reports that, at the beginning of the 2003 fiscal year, prior to Operation Iraqi Freedom the aviation service parts alone was in excess of US1billion.Thissituationmakesthemanagementoftheseitemsaverycriticaltacticalandstrategicissuethatisworthyoffurtherstudy.Thekeychallengeistomaintainhighequipmentavailabilitywithlowservicecost(e.g.,holding,warehousing,transportation,technicians,overhead,etc.).Forinstance,despitereportingUS1 billion. This situation makes the management of these items a very critical tactical and strategic issue that is worthy of further study. The key challenge is to maintain high equipment availability with low service cost (e.g., holding, warehousing, transportation, technicians, overhead, etc.). For instance, despite reporting US10.5 billion in appropriations spent on purchasing service parts in 2000, the United States Air Force (USAF) continues to report shortages of service parts. The USAF estimates that, if the investment on service parts decreases to about US$5.3 billion, weapons systems availability would range from 73 to 100 percent. Thus, better management of service parts inventories should create opportunities for cost savings caused by the efficient management of these inventories. Unfortunately, service parts belong to a class of inventory that continually makes them difficult to manage. Moreover, it can be said that the general function of service parts inventories is to support maintenance actions; therefore, service parts inventory policies are highly related to the resident maintenance policies. However, the interrelationship between service parts inventory management and maintenance policies is often overlooked, both in practice and in the academic literature, when it comes to optimizing maintenance and service parts inventory policies. Hence, there exists a great divide between maintenance and service parts inventory theory and practice. This research investigation specifically considers the aspect of joint maintenance and service part inventory optimization. We decompose the joint maintenance and service part inventory optimization problem into the supplier s problem and the customer s problem. Long-run expected cost functions for each problem that include the most common maintenance cost parameters and service parts inventory cost parameters are presented. Computational experiments are conducted for a single-supplier two-echelon service parts supply chain configuration varying the number of customers in the network. Lateral transshipments (LTs) of service parts between customers are not allowed. For this configuration, we optimize the cost functions using a traditional, or decoupled, approach, where each supply chain entity optimizes its cost individually, and a joint approach, where the cost objectives of both the supplier and customers are optimized simultaneously. We show that the multiple objective optimization approach outperforms the traditional decoupled optimization approach by generating lower system-wide supply chain network costs. The model formulations are extended by relaxing the assumption of no LTs between customers in the supply chain network. Similar to those for the no LTs configuration, the results for the LTs configuration show that the multiobjective optimization outperforms the decoupled optimization in terms of system-wide cost. Hence, it is economically beneficial to jointly consider all parties within the supply network. Further, we compare the model configurations LTs versus no LTs, and we show that using LTs improves the overall savings of the system. It is observed that the improvement is mostly derived from reduced shortage costs since the equipment downtime is reduced due to the proximity of the supply. The models and results of this research have significant practical implications as they can be used to assist decision-makers to determine when and where to pre-position parts inventories to maximize equipment availability. Furthermore, these models can assist in the preparation of the terms of long-term service agreements and maintenance contracts between original equipment manufacturers and their customers (i.e., equipment owners and/or operators), including determining the equitable allocation of all system-wide cost savings under the agreement

    Prognostics-Based Two-Operator Competition for Maintenance and Service Part Logistics

    Get PDF
    Prognostics and timely maintenance of components are critical to the continuing operation of a system. By implementing prognostics, it is possible for the operator to maintain the system in the right place at the right time. However, the complexity in the real world makes near-zero downtime difficult to achieve partly because of a possible shortage of required service parts. This is realistic and quite important in maintenance practice. To coordinate with a prognostics-based maintenance schedule, the operator must decide when to order service parts and how to compete with other operators who also need the same parts. This research addresses a joint decision-making approach that assists two operators in making proactive maintenance decisions and strategically competing for a service part that both operators rely on for their individual operations. To this end, a maintenance policy involving competition in service part procurement is developed based on the Stackelberg game-theoretic model. Variations of the policy are formulated for three different scenarios and solved via either backward induction or genetic algorithm methods. Unlike the first two scenarios, the possibility for either of the operators being the leader in such competitions is considered in the third scenario. A numerical study on wind turbine operation is provided to demonstrate the use of the joint decision-making approach in maintenance and service part logistics

    Multi-objective model for optimizing railway infrastructure asset renewal

    Get PDF
    Trabalho inspirado num problema real da empresa Infraestruturas de Portugal, EP.A multi-objective model for managing railway infrastructure asset renewal is presented. The model aims to optimize three objectives, while respecting operational constraints: levelling investment throughout multiple years, minimizing total cost and minimizing work start postponements. Its output is an optimized intervention schedule. The model is based on a case study from a Portuguese infrastructure management company, which specified the objectives and constraints, and reflects management practice on railway infrastructure. The results show that investment levelling greatly influences the other objectives and that total cost fluctuations may range from insignificant to important, depending on the condition of the infrastructure. The results structure is argued to be general and suggests a practical methodology for analysing trade-offs and selecting a solution for implementation.info:eu-repo/semantics/publishedVersio

    Modelling and simulation for the joint maintenance-inventory optimisation of production systems

    Get PDF
    Simulation methodologies are developed to model the joint optimization of preventive maintenance and spare parts inventory for a specific industrial plant under different production configurations. First, spare parts provisioning for a single-line system is considered, with the assumption that the demand is driven by maintenance requirements. The results indicate that a periodic review policy with replenishment as frequent as inspection is cost-optimal. Second, the joint optimization model for a multi-line (parallel) system is developed. It is found that a just-in-time review policy with inspection as frequent as replenishment produces the lowest cost policy. In this latter case, an implication of the proposed methodology is that, where mathematical modelling is intractable, or the use of certain assumptions make them impractical, simulation modelling is an appropriate solution tool. Under both production settings, the long-run average cost per unit time is used as the optimality criterion for the comparison of several policies
    corecore