202 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Tutorial on the Optimization of Amplify-and-Forward MIMO Relay Systems

    Get PDF
    The remarkable promise of multiple-input multiple-output (MIMO) wireless channels has motivated an intense research activity to characterize the theoretical and practical issues associated with the design of transmit (source) and receive (destination) processing matrices under different operating conditions. This activity was primarily focused on point-to-point (single-hop) communications but more recently there has been an extensive work on two-hop or multi-hop settings in which single or multiple relays are used to deliver the information from the source to the destination. The aim of this tutorial is to provide an up-to-date overview of the fundamental results and practical implementation issues of designing amplify-and-forward MIMO relay systems

    Effects of channel estimation on multiuser virtual MIMO-OFDMA relay-based networks

    Get PDF
    A practical multiuser cooperative transmission scheme denoted as Virtual Maximum Ratio Transmission (VMRT) for multiple-input multiple-output-orthogonal frequency division multiple access (MIMO-OFDMA) relay-based networks is proposed and evaluated in the presence of a realistic channel estimation algorithm and using low-density parity-check (LDPC) codes. It is shown that this scheme is robust against channel estimation errors. It offers diversity and array gain, keeping the complexity low with a multiuser and multiantenna channel estimation algorithm that is simple and efficient. In addition, the combination with LDPC codes provides improved gains; diversity gains larger than 6 dB can be easily obtained with a reduced number of relays. Thus, this scheme can be used to extend coverage or increase system throughput by using simple cooperative OFDMA-based relays.The authors would like to thank Jae-Yun Ko for his valuable help at the beginning of our work. This work has been partly funded by the projects MULTIADAPTIVE (TEC2008-06327- C03-02), COMONSENS (CSD2008-00010) and CODIV (ICT-2007-215477).Publicad

    Advances in Multi-User Scheduling and Turbo Equalization for Wireless MIMO Systems

    Get PDF
    Nach einer Einleitung behandelt Teil 2 Mehrbenutzer-Scheduling für die Abwärtsstrecke von drahtlosen MIMO Systemen mit einer Sendestation und kanaladaptivem precoding: In jeder Zeit- oder Frequenzressource kann eine andere Nutzergruppe gleichzeitig bedient werden, räumlich getrennt durch unterschiedliche Antennengewichte. Nutzer mit korrelierten Kanälen sollten nicht gleichzeitig bedient werden, da dies die räumliche Trennbarkeit erschwert. Die Summenrate einer Nutzermenge hängt von den Antennengewichten ab, die wiederum von der Nutzerauswahl abhängen. Zur Entkopplung des Problems schlägt diese Arbeit Metriken vor basierend auf einer geschätzten Rate mit ZF precoding. Diese lässt sich mit Hilfe von wiederholten orthogonalen Projektionen abschätzen, wodurch die Berechnung von Antennengewichten beim Scheduling entfällt. Die Ratenschätzung kann basierend auf momentanen Kanalmessungen oder auf gemittelter Kanalkenntnis berechnet werden und es können Datenraten- und Fairness-Kriterien berücksichtig werden. Effiziente Suchalgorithmen werden vorgestellt, die die gesamte Systembandbreite auf einmal bearbeiten können und zur Komplexitätsreduktion die Lösung in Zeit- und Frequenz nachführen können. Teil 3 zeigt wie mehrere Sendestationen koordiniertes Scheduling und kooperative Signalverarbeitung einsetzen können. Mittels orthogonalen Projektionen ist es möglich, Inter-Site Interferenz zu schätzen, ohne Antennengewichte berechnen zu müssen. Durch ein Konzept virtueller Nutzer kann der obige Scheduling-Ansatz auf mehrere Sendestationen und sogar Relays mit SDMA erweitert werden. Auf den benötigten Signalisierungsaufwand wird kurz eingegangen und eine Methode zur Schätzung der Summenrate eines Systems ohne Koordination besprochen. Teil4 entwickelt Optimierungen für Turbo Entzerrer. Diese Nutzen Signalkorrelation als Quelle von Redundanz. Trotzdem kann eine Kombination mit MIMO precoding sinnvoll sein, da bei Annahme realistischer Fehler in der Kanalkenntnis am Sender keine optimale Interferenzunterdrückung möglich ist. Mit Hilfe von EXIT Charts wird eine neuartige Methode zur adaptiven Nutzung von a-priori-Information zwischen Iterationen entwickelt, die die Konvergenz verbessert. Dabei wird gezeigt, wie man semi-blinde Kanalschätzung im EXIT chart berücksichtigen kann. In Computersimulationen werden alle Verfahren basierend auf 4G-Systemparametern überprüft.After an introduction, part 2 of this thesis deals with downlink multi-user scheduling for wireless MIMO systems with one transmitting station performing channel adaptive precoding:Different user subsets can be served in each time or frequency resource by separating them in space with different antenna weight vectors. Users with correlated channel matrices should not be served jointly since correlation impairs the spatial separability.The resulting sum rate for each user subset depends on the precoding weights, which in turn depend on the user subset. This thesis manages to decouple this problem by proposing a scheduling metric based on the rate with ZF precoding such as BD, written with the help of orthogonal projection matrices. It allows estimating rates without computing any antenna weights by using a repeated projection approximation.This rate estimate allows considering user rate requirements and fairness criteria and can work with either instantaneous or long term averaged channel knowledge.Search algorithms are presented to efficiently solve user grouping or selection problems jointly for the entire system bandwidth while being able to track the solution in time and frequency for complexity reduction. Part 3 shows how multiple transmitting stations can benefit from cooperative scheduling or joint signal processing. An orthogonal projection based estimate of the inter-site interference power, again without computing any antenna weights, and a virtual user concept extends the scheduling approach to cooperative base stations and finally included SDMA half-duplex relays in the scheduling.Signalling overhead is discussed and a method to estimate the sum rate without coordination. Part 4 presents optimizations for Turbo Equalizers. There, correlation between user signals can be exploited as a source of redundancy. Nevertheless a combination with transmit precoding which aims at reducing correlation can be beneficial when the channel knowledge at the transmitter contains a realistic error, leading to increased correlation. A novel method for adaptive re-use of a-priori information between is developed to increase convergence by tracking the iterations online with EXIT charts.A method is proposed to model semi-blind channel estimation updates in an EXIT chart. Computer simulations with 4G system parameters illustrate the methods using realistic channel models.Im Buchhandel erhältlich: Advances in Multi-User Scheduling and Turbo Equalization for Wireless MIMO Systems / Fuchs-Lautensack,Martin Ilmenau: ISLE, 2009,116 S. ISBN 978-3-938843-43-

    Two–Way Relaying Communications with OFDM and BICM/BICM-ID

    Get PDF
    Relay-aided communication methods have gained strong interests in academic community and been applied in various wireless communication scenarios. Among different techniques in relay-aided communication system, two-way relaying communication (TWRC) achieves the highest spectral efficiency due to its bi-directional transmission capability. Nevertheless, different from the conventional point-to-point communication system, TWRC suffers from detection quality degradation caused by the multiple-access interference (MAI). In addition, because of the propagation characteristics of wireless channels, fading and multipath dispersion also contribute strongly to detection errors. Therefore, this thesis is mainly concerned with designing transmission and detection schemes to provide good detection quality of TWRC while taking into account the negative impacts of fading, multipath dispersion and multiple-access interference. First, a TWRC system operating over multipath fading channels is considered and orthogonal frequency-division multiplexing (OFDM) is adopted to handle the inter-symbol interference (ISI) caused by the multipath dispersion. In particular, adaptive physical-layer network coding (PNC) is employed to address the MAI issue. By analyzing the detection error probability, various adaptive PNC schemes are discussed for using with OFDM and the scheme achieving the best trade-off among performance, overhead and complexity is suggested. In the second part of the thesis, the design of distributed precoding in TWRC using OFDM under multipath fading channels is studied. The objective is to design a distributed precoding scheme which can alleviate MAI and achieve multipath diversity to combat fading. Specifically, three types of errors are introduced when analyzing the error probability in the multiple access (MA) phase. Through analysis and simulation, the scheme that performs precoding in both time and frequency domains is demonstrated to achieve the maximum diversity gains under all types of errors. Finally, the last part of the thesis examines a communication system incorporating forward error correction (FEC) codes. Specifically, bit-interleaved code modulation (BICM) without and with iterative decoding (BICM-ID) are investigated in a TWRC system. Distributed linear constellation precoding (DLCP) is applied to handle MAI and the design of DLCP in a TWRC system using BICM/BICM-ID is discussed. Taking into account the multiple access channel from the terminal nodes to the relay node, decoding based on the quaternary code representation is introduced. Several error probability bounds are derived to aid in the design of DLCP. Based on these bounds, optimal parameters of DLCP are obtained through analysis and computer search. It is also found that, by combining XORbased network coding with successful iterative decoding, the MAI is eliminated and thus DLCP is not required in a BICM-ID system

    Resource allocation and optimization techniques in wireless relay networks

    Get PDF
    Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks
    • …
    corecore