2,241 research outputs found

    Small Cell Offloading Through Cooperative Communication in Software-Defined Heterogeneous Networks

    Full text link
    To meet the ever-growing demand for a higher communicating rate and better communication quality, more and more small cells are overlaid under the macro base station (MBS) tier, thus forming the heterogeneous networks. Small cells can ease the load pressure of MBS but lack of the guarantee of performance. On the other hand, cooperation draws more and more attention because of the great potential of small cell densification. Some technologies matured in wired network can also be applied to cellular networks, such as Software-defined networking (SDN). SDN helps simplify the structure of multi-tier networks. And it's more reasonable for the SDN controller to implement cell coordination. In this paper, we propose a method to offload users from MBSs through small cell cooperation in heterogeneous networks. Association probability is the main indicator of offloading. By using the tools from stochastic geometry, we then obtain the coverage probabilities when users are associated with different types of base stations (BSs). All the cell association and cooperation are conducted by the SDN controller. Then on this basis, we compare the overall coverage probabilities, achievable rate and energy efficiency with and without cooperation. Numerical results show that small cell cooperation can offload more users from MBS tier. It can also increase the system's coverage performance. As small cells become denser, cooperation can bring more gains to the energy efficiency of the network.Comment: 12 pages, 7 figure

    Energy Efficiency Analysis of Heterogeneous Cellular Networks With Extra Cell Range Expansion

    Full text link
    The split control and user plane is key to the future heterogeneous cellular network (HCN), where the small cells are dedicated for the most data transmission while the macrocells are mainly responsible for the control signaling. Adapting to this technology, we propose a general and tractable framework of extra cell range expansion (CRE) by introducing an additional bias factor to enlarge the range of small cells flexibly for the extra offloaded macrousers in a two-tier HCN, where the macrocell and small cell users have different required data rates. Using stochastic geometry, we analyze the energy efficiency (EE) of the extra CRE with joint low power transmission and resource partitioning, where the coverages of EE and data rate are formulated theoretically. Numerical simulations verify that the proposed extra CRE can improve the EE performance of HCN, and also show that deploying more small cells can provide benefits for EE coverage, but the EE improvement becomes saturated if the small cell density exceeds a threshold. Instead of establishing the detail configuration, this paper can provide some valuable insights and guidelines to the practical design of future networks, especially for the traffic offloading in HCN.Comment: 10 pages, 8 figures, IEEE ACCES

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Joint User Association and Power Control for Load Balancing in Downlink Heterogeneous Cellular Networks

    Full text link
    Instead of achievable rate in the conventional association, we utilize the effective rate to design two association schemes for load balancing in heterogeneous cellular networks (HCNs), which are both formulated as such problems with maximizing the sum of effective rates. In these two schemes, the one just considers user association, but the other introduces power control to mitigate interference and reduce energy consumption while performing user association. Since the effective rate is closely related to the load of some BS and the achievable rate of some user, it can be used as a key factor of association schemes for load balancing in HCNs. To solve the association problem without power control, we design a one-layer iterative algorithm, which converts the sum-of-ratio form of original optimization problem into a parameterized polynomial form. By combining this algorithm with power control algorithm, we propose a two-layer iterative algorithm for the association problem with power control. Specially, the outer layer performs user association using the algorithm of problem without power control, and the inner layer updates the transmit power of each BS using a power update function (PUF). At last, we give some convergence and complexity analyses for the proposed algorithms. As shown in simulation results, the proposed schemes have superior performance than the conventional association, and the scheme with joint user association and power control achieves a higher load balancing gain and energy efficiency than conventional scheme and other offloading scheme.Comment: 10 page

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    Applications of Economic and Pricing Models for Resource Management in 5G Wireless Networks: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of economic and pricing theory for resource management in the evolving fifth generation (5G) wireless networks. The 5G wireless networks are envisioned to overcome existing limitations of cellular networks in terms of data rate, capacity, latency, energy efficiency, spectrum efficiency, coverage, reliability, and cost per information transfer. To achieve the goals, the 5G systems will adopt emerging technologies such as massive Multiple-Input Multiple-Output (MIMO), mmWave communications, and dense Heterogeneous Networks (HetNets). However, 5G involves multiple entities and stakeholders that may have different objectives, e.g., high data rate, low latency, utility maximization, and revenue/profit maximization. This poses a number of challenges to resource management designs of 5G. While the traditional solutions may neither efficient nor applicable, economic and pricing models have been recently developed and adopted as useful tools to achieve the objectives. In this paper, we review economic and pricing approaches proposed to address resource management issues in the 5G wireless networks including user association, spectrum allocation, and interference and power management. Furthermore, we present applications of economic and pricing models for wireless caching and mobile data offloading. Finally, we highlight important challenges, open issues and future research directions of applying economic and pricing models to the 5G wireless networks

    TARCO: Two-Stage Auction for D2D Relay Aided Computation Resource Allocation in Hetnet

    Full text link
    In heterogeneous cellular network, task scheduling for computation offloading is one of the biggest challenges. Most works focus on alleviating heavy burden of macro base stations by moving the computation tasks on macro-cell user equipment (MUE) to remote cloud or small-cell base stations. But the selfishness of network users is seldom considered. Motivated by the cloud edge computing, this paper provides incentive for task transfer from macro cell users to small cell base stations. The proposed incentive scheme utilizes small cell user equipment to provide relay service. The problem of computation offloading is modelled as a two-stage auction, in which the remote MUEs with common social character can form a group and then buy the computation resource of small-cell base stations with the relay of small cell user equipment. A two-stage auction scheme named TARCO is contributed to maximize utilities for both sellers and buyers in the network. The truthful, individual rationality and budget balance of the TARCO are also proved in this paper. In addition, two algorithms are proposed to further refine TARCO on the social welfare of the network. Extensive simulation results demonstrate that, TARCO is better than random algorithm by about 104.90% in terms of average utility of MUEs, while the performance of TARCO is further improved up to 28.75% and 17.06% by the proposed two algorithms, respectively.Comment: 22 pages, 9 figures, Working paper, SUBMITTED to IEEE TRANSACTIONS ON SERVICES COMPUTIN

    MEC-aware Cell Association for 5G Heterogeneous Networks

    Full text link
    The need for efficient use of network resources is continuously increasing with the grow of traffic demand, however, current mobile systems have been planned and deployed so far with the mere aim of enhancing radio coverage and capacity. Unfortunately, this approach is not sustainable anymore, as 5G communication systems will have to cope with huge amounts of traffic, heterogeneous in terms of latency among other Qualityof- Service (QoS) requirements. Moreover, the advent of Multiaccess Edge Computing (MEC) brings up the need to more efficiently plan and dimension network deployment by means of jointly exploiting the available radio and processing resources. From this standpoint, advanced cell association of users can play a key role for 5G systems. Focusing on a Heterogeneous Network (HetNet), this paper proposes a comparison between state-of-the-art (i.e., radio-only) and MEC-aware cell association rules, taking the scenario of task offloading in the Uplink (UL) as an example. Numerical evaluations show that the proposed cell association rule provides nearly 60% latency reduction, as compared to its standard, radio-exclusive counterpart.Comment: 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW): The First Workshop on Control and management of Vertical slicing including the Edge and Fog Systems (COMPASS

    User Association for Offloading in Heterogeneous Network Based on Matern Cluster Process

    Full text link
    Future mobile networks are converging toward heterogeneous multi-tier networks, where various classes of base stations (BS) are deployed based on user demand. So it is quite necessary to utilize the BSs resources rationally when BSs are sufficient. In this paper, we develop a more realistic model that fully considering the inter-tier dependence and the dependence between users and BSs, where the macro base stations (MBSs) are distributed according to a homogeneous Poisson point process (PPP) and the small base stations (SBSs) follows a Matern cluster process (MCP) whose parent points are located in the positions of the MBSs in order to offload the users from the over-loaded MBSs. We also assume the users are just randomly located in the circles centered at the MBSs. Under this model, we derive the association probability and the average ergodic rate by stochastic geometry. An interesting result that the density of MBS and the radius of the clusters jointly affect the association probabilities in a joint form is obtained. We also observe that using the clustered SBSs results in aggressive offloading compared with previous cellular networks

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure
    corecore