95 research outputs found

    Surface and Volumetric Segmentation of Complex 3-D Objects Using Parametric Shape Models

    Get PDF
    The problem of part definition, description, and decomposition is central to the shape recognition systems. In this dissertation, we develop an integrated framework for segmenting dense range data of complex 3-D scenes into their constituent parts in terms of surface and volumetric primitives. Unlike previous approaches, we use geometric properties derived from surface, as well as volumetric models, to recover structured descriptions of complex objects without a priori domain knowledge or stored models. To recover shape descriptions, we use bi-quadric models for surface representation and superquadric models for object-centered volumetric representation. The surface segmentation uses a novel approach of searching for the best piecewise description of the image in terms of bi-quadric (z = f(x,y)) models. It is used to generate the region adjacency graphs, to localize surface discontinuities, and to derive global shape properties of the surfaces. A superquadric model is recovered for the entire data set and residuals are computed to evaluate the fit. The goodness-of-fit value based on the inside-outside function, and the mean-squared distance of data from the model provide quantitative evaluation of the model. The qualitative evaluation criteria check the local consistency of the model in the form of residual maps of overestimated and underestimated data regions. The control structure invokes the models in a systematic manner, evaluates the intermediate descriptions, and integrates them to achieve final segmentation. Superquadric and bi-quadric models are recovered in parallel to incorporate the best of the coarse-to-fine and fine-to-coarse segmentation strategies. The model evaluation criteria determine the dimensionality of the scene, and decide whether to terminate the procedure, or selectively refine the segmentation by following a global-to-local part segmentation approach. The control module generates hypotheses about superquadric models at clusters of underestimated data and performs controlled extrapolation of the part-model by shrinking the global model. As the global model shrinks and the local models grow, they are evaluated and tested for termination or further segmentation. We present results on real range images of scenes of varying complexity, including objects with occluding parts, and scenes where surface segmentation is not sufficient to guide the volumetric segmentation. We analyze the issue of segmentation of complex scenes thoroughly by studying the effect of missing data on volumetric model recovery, generating object-centered descriptions, and presenting a complete set of criteria for the evaluation of the superquadric models. We conclude by discussing the applications of our approach in data reduction, 3-D object recognition, geometric modeling, automatic model generation. object manipulation, and active vision

    Vertex classification for non-uniform geometry reduction.

    Get PDF
    Complex models created from isosurface extraction or CAD and highly accurate 3D models produced from high-resolution scanners are useful, for example, for medical simulation, Virtual Reality and entertainment. Often models in general require some sort of manual editing before they can be incorporated in a walkthrough, simulation, computer game or movie. The visualization challenges of a 3D editing tool may be regarded as similar to that of those of other applications that include an element of visualization such as Virtual Reality. However the rendering interaction requirements of each of these applications varies according to their purpose. For rendering photo-realistic images in movies computer farms can render uninterrupted for weeks, a 3D editing tool requires fast access to a model's fine data. In Virtual Reality rendering acceleration techniques such as level of detail can temporarily render parts of a scene with alternative lower complexity versions in order to meet a frame rate tolerable for the user. These alternative versions can be dynamic increments of complexity or static models that were uniformly simplified across the model by minimizing some cost function. Scanners typically have a fixed sampling rate for the entire model being scanned, and therefore may generate large amounts of data in areas not of much interest or that contribute little to the application at hand. It is therefore desirable to simplify such models non-uniformly. Features such as very high curvature areas or borders can be detected automatically and simplified differently to other areas without any interaction or visualization. However a problem arises when one wishes to manually select features of interest in the original model to preserve and create stand alone, non-uniformly reduced versions of large models, for example for medical simulation. To inspect and view such models the memory requirements of LoD representations can be prohibitive and prevent storage of a model in main memory. Furthermore, although asynchronous rendering of a base simplified model ensures a frame rate tolerable to the user whilst detail is paged, no guarantees can be made that what the user is selecting is at the original resolution of the model or of an appropriate LoD owing to disk lag or the complexity of a particular view selected by the user. This thesis presents an interactive method in the con text of a 3D editing application for feature selection from any model that fits in main memory. We present a new compression/decompression of triangle normals and colour technique which does not require dedicated hardware that allows for 87.4% memory reduction and allows larger models to fit in main memory with at most 1.3/2.5 degrees of error on triangle normals and to be viewed interactively. To address scale and available hardware resources, we reference a hierarchy of volumes of different sizes. The distances of the volumes at each level of the hierarchy to the intersection point of the line of sight with the model are calculated and these distances sorted. At startup an appropriate level of the tree is automatically chosen by separating the time required for rendering from that required for sorting and constraining the latter according to the resources available. A clustered navigation skin and depth buffer strategy allows for the interactive visualisation of models of any size, ensuring that triangles from the closest volumes are rendered over the navigation skin even when the clustered skin may be closer to the viewer than the original model. We show results with scanned models, CAD, textured models and an isosurface. This thesis addresses numerical issues arising from the optimisation of cost functions in LoD algorithms and presents a semi-automatic solution for selection of the threshold on the condition number of the matrix to be inverted for optimal placement of the new vertex created by an edge collapse. We show that the units in which a model is expressed may inadvertently affect the condition of these matrices, hence affecting the evaluation of different LoD methods with different solvers. We use the same solver with an automatically calibrated threshold to evaluate different uniform geometry reduction techniques. We then present a framework for non-uniform reduction of regular scanned models that can be used in conjunction with a variety of LoD algorithms. The benefits of non-uniform reduction are presented in the context of an animation system. (Abstract shortened by UMI.)

    Analysis and Manipulation of Repetitive Structures of Varying Shape

    Get PDF
    Self-similarity and repetitions are ubiquitous in man-made and natural objects. Such structural regularities often relate to form, function, aesthetics, and design considerations. Discovering structural redundancies along with their dominant variations from 3D geometry not only allows us to better understand the underlying objects, but is also beneficial for several geometry processing tasks including compact representation, shape completion, and intuitive shape manipulation. To identify these repetitions, we present a novel detection algorithm based on analyzing a graph of surface features. We combine general feature detection schemes with a RANSAC-based randomized subgraph searching algorithm in order to reliably detect recurring patterns of locally unique structures. A subsequent segmentation step based on a simultaneous region growing is applied to verify that the actual data supports the patterns detected in the feature graphs. We introduce our graph based detection algorithm on the example of rigid repetitive structure detection. Then we extend the approach to allow more general deformations between the detected parts. We introduce subspace symmetries whereby we characterize similarity by requiring the set of repeating structures to form a low dimensional shape space. We discover these structures based on detecting linearly correlated correspondences among graphs of invariant features. The found symmetries along with the modeled variations are useful for a variety of applications including non-local and non-rigid denoising. Employing subspace symmetries for shape editing, we introduce a morphable part model for smart shape manipulation. The input geometry is converted to an assembly of deformable parts with appropriate boundary conditions. Our method uses self-similarities from a single model or corresponding parts of shape collections as training input and allows the user also to reassemble the identified parts in new configurations, thus exploiting both the discrete and continuous learned variations while ensuring appropriate boundary conditions across part boundaries. We obtain an interactive yet intuitive shape deformation framework producing realistic deformations on classes of objects that are difficult to edit using repetition-unaware deformation techniques

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Accelerated volumetric reconstruction from uncalibrated camera views

    Get PDF
    While both work with images, computer graphics and computer vision are inverse problems. Computer graphics starts traditionally with input geometric models and produces image sequences. Computer vision starts with input image sequences and produces geometric models. In the last few years, there has been a convergence of research to bridge the gap between the two fields. This convergence has produced a new field called Image-based Rendering and Modeling (IBMR). IBMR represents the effort of using the geometric information recovered from real images to generate new images with the hope that the synthesized ones appear photorealistic, as well as reducing the time spent on model creation. In this dissertation, the capturing, geometric and photometric aspects of an IBMR system are studied. A versatile framework was developed that enables the reconstruction of scenes from images acquired with a handheld digital camera. The proposed system targets applications in areas such as Computer Gaming and Virtual Reality, from a lowcost perspective. In the spirit of IBMR, the human operator is allowed to provide the high-level information, while underlying algorithms are used to perform low-level computational work. Conforming to the latest architecture trends, we propose a streaming voxel carving method, allowing a fast GPU-based processing on commodity hardware

    Model-Based High-Dimensional Pose Estimation with Application to Hand Tracking

    Get PDF
    This thesis presents novel techniques for computer vision based full-DOF human hand motion estimation. Our main contributions are: A robust skin color estimation approach; A novel resolution-independent and memory efficient representation of hand pose silhouettes, which allows us to compute area-based similarity measures in near-constant time; A set of new segmentation-based similarity measures; A new class of similarity measures that work for nearly arbitrary input modalities; A novel edge-based similarity measure that avoids any problematic thresholding or discretizations and can be computed very efficiently in Fourier space; A template hierarchy to minimize the number of similarity computations needed for finding the most likely hand pose observed; And finally, a novel image space search method, which we naturally combine with our hierarchy. Consequently, matching can efficiently be formulated as a simultaneous template tree traversal and function maximization

    A study of Symmetric and Repetitive Structures in Image-Based Modeling

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore