14,871 research outputs found

    Sequential Monte Carlo Methods for System Identification

    Full text link
    One of the key challenges in identifying nonlinear and possibly non-Gaussian state space models (SSMs) is the intractability of estimating the system state. Sequential Monte Carlo (SMC) methods, such as the particle filter (introduced more than two decades ago), provide numerical solutions to the nonlinear state estimation problems arising in SSMs. When combined with additional identification techniques, these algorithms provide solid solutions to the nonlinear system identification problem. We describe two general strategies for creating such combinations and discuss why SMC is a natural tool for implementing these strategies.Comment: In proceedings of the 17th IFAC Symposium on System Identification (SYSID). Added cover pag

    Two-state filtering for joint state-parameter estimation

    Get PDF
    This paper presents an approach for simultaneous estimation of the state and unknown parameters in a sequential data assimilation framework. The state augmentation technique, in which the state vector is augmented by the model parameters, has been investigated in many previous studies and some success with this technique has been reported in the case where model parameters are additive. However, many geophysical or climate models contains non-additive parameters such as those arising from physical parametrization of sub-grid scale processes, in which case the state augmentation technique may become ineffective since its inference about parameters from partially observed states based on the cross covariance between states and parameters is inadequate if states and parameters are not linearly correlated. In this paper, we propose a two-stages filtering technique that runs particle filtering (PF) to estimate parameters while updating the state estimate using Ensemble Kalman filter (ENKF; these two "sub-filters" interact. The applicability of the proposed method is demonstrated using the Lorenz-96 system, where the forcing is parameterized and the amplitude and phase of the forcing are to be estimated jointly with the states. The proposed method is shown to be capable of estimating these model parameters with a high accuracy as well as reducing uncertainty while the state augmentation technique fails

    Estimation and prediction of road traffic flow using particle filter for real-time traffic control

    Get PDF
    Real-data testing results of a real-time state estimator and predictor are presented with particular focus on the feature of enabling of detector fault alarms and also its relation to queue-length based traffic control. A parameter and state estimator/predictor is developed by using particle filter. The simulation testing results are quite satisfactory and promising for further work on developing a hybrid model of traffic flow that captures the transition between low and high intensity. By using this hybrid model, it may be more feasible to achieve the significant feature of automatic adaptation to changing system condition
    corecore