195 research outputs found

    Dtn and non-dtn routing protocols for inter-cubesat communications: A comprehensive survey

    Get PDF
    CubeSats, which are limited by size and mass, have limited functionality. These miniaturised satellites suffer from a low power budget, short radio range, low transmission speeds, and limited data storage capacity. Regardless of these limitations, CubeSats have been deployed to carry out many research missions, such as gravity mapping and the tracking of forest fires. One method of increasing their functionality and reducing their limitations is to form CubeSat networks, or swarms, where many CubeSats work together to carry out a mission. Nevertheless, the network might have intermittent connectivity and, accordingly, data communication becomes challenging in such a disjointed network where there is no contemporaneous path between source and destination due to satellites’ mobility pattern and given the limitations of range. In this survey, various inter-satellite routing protocols that are Delay Tolerant (DTN) and Non Delay Tolerant (Non-DTN) are considered. DTN routing protocols are considered for the scenarios where the network is disjointed with no contemporaneous path between a source and a destination. We qualitatively compare all of the above routing protocols to highlight the positive and negative points under different network constraints. We conclude that the performance of routing protocols used in aerospace communications is highly dependent on the evolving topology of the network over time. Additionally, the Non-DTN routing protocols will work efficiently if the network is dense enough to establish reliable links between CubeSats. Emphasis is also given to network capacity in terms of how buffer, energy, bandwidth, and contact duration influence the performance of DTN routing protocols, where, for example, flooding-based DTN protocols can provide superior performance in terms of maximizing delivery ratio and minimizing a delivery delay. However, such protocols are not suitable for CubeSat networks, as they harvest the limited resources of these tiny satellites and they are contrasted with forwarding-based DTN routing protocols, which are resource-friendly and produce minimum overheads on the cost of degraded delivery probability. From the literature, we found that quota-based DTN routing protocols can provide the necessary balance between delivery delay and overhead costs in many CubeSat missions

    Scalable Schedule-Aware Bundle Routing

    Get PDF
    This thesis introduces approaches providing scalable delay-/disruption-tolerant routing capabilities in scheduled space topologies. The solution is developed for the requirements derived from use cases built according to predictions for future space topology, like the future Mars communications architecture report from the interagency operations advisory group. A novel routing algorithm is depicted to provide optimized networking performance that discards the scalability issues inherent to state-of-the-art approaches. This thesis also proposes a new recommendation to render volume management concerns generic and easily exchangeable, including a new simple management technique increasing volume awareness accuracy while being adaptable to more particular use cases. Additionally, this thesis introduces a more robust and scalable approach for internetworking between subnetworks to increase the throughput, reduce delays, and ease configuration thanks to its high flexibility.:1 Introduction 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Outline 2 Requirements 2.1 Use cases 2.2 Requirements 2.2.1 Requirement analysis 2.2.2 Requirements relative to the routing algorithm 2.2.3 Requirements relative to the volume management 2.2.4 Requirements relative to interregional routing 3 Fundamentals 3.1 Delay-/disruption-tolerant networking 3.1.1 Architecture 3.1.2 Opportunistic and deterministic DTNs 3.1.3 DTN routing 3.1.4 Contact plans 3.1.5 Volume management 3.1.6 Regions 3.2 Contact graph routing 3.2.1 A non-replication routing scheme 3.2.2 Route construction 3.2.3 Route selection 3.2.4 Enhancements and main features 3.3 Graph theory and DTN routing 3.3.1 Mapping with DTN objects 3.3.2 Shortest path algorithm 3.3.3 Edge and vertex contraction 3.4 Algorithmic determinism and predictability 4 Preliminary analysis 4.1 Node and contact graphs 4.2 Scenario 4.3 Route construction in ION-CGR 4.4 Alternative route search 4.4.1 Yen’s algorithm scalability 4.4.2 Blocking issues with Yen 4.4.3 Limiting contact approaches 4.5 CGR-multicast and shortest-path tree search 4.6 Volume management 4.6.1 Volume obstruction 4.6.2 Contact sink 4.6.3 Ghost queue 4.6.4 Data rate variations 4.7 Hierarchical interregional routing 4.8 Other potential issues 5 State-of-the-art and related work 5.1 Taxonomy 5.2 Opportunistic and probabilistic approaches 5.2.1 Flooding approaches 5.2.2 PROPHET 5.2.3 MaxProp 5.2.4 Issues 5.3 Deterministic approaches 5.3.1 Movement-aware routing over interplanetary networks 5.3.2 Delay-tolerant link state routing 5.3.3 DTN routing for quasi-deterministic networks 5.3.4 Issues 5.4 CGR variants and enhancements 5.4.1 CGR alternative routing table computation 5.4.2 CGR-multicast 5.4.3 CGR extensions 5.4.4 RUCoP and CGR-hop 5.4.5 Issues 5.5 Interregional routing 5.5.1 Border gateway protocol 5.5.2 Hierarchical interregional routing 5.5.3 Issues 5.6 Further approaches 5.6.1 Machine learning approaches 5.6.2 Tropical geometry 6 Scalable schedule-aware bundle routing 6.1 Overview 6.2 Shortest-path tree routing for space networks 6.2.1 Structure 6.2.2 Tree construction 6.2.3 Tree management 6.2.4 Tree caching 6.3 Contact segmentation 6.3.1 Volume management interface 6.3.2 Simple volume manager 6.3.3 Enhanced volume manager 6.4 Contact passageways 6.4.1 Regional border definition 6.4.2 Virtual nodes 6.4.3 Pathfinding and administration 7 Evaluation 7.1 Methodology 7.1.1 Simulation tools 7.1.2 Simulator extensions 7.1.3 Algorithms and scenarios 7.2 Offline analysis 7.3 Eliminatory processing pressures 7.4 Networking performance 7.4.1 Intraregional unicast routing tests 7.4.2 Intraregional multicast tests 7.4.3 Interregional routing tests 7.4.4 Behavior with congestion 7.5 Requirement fulfillment 8 Summary and Outlook 8.1 Conclusion 8.2 Future works 8.2.1 Next development steps 8.2.2 Contact graph routin

    Nanosatellite-5G Integration in the Millimeter Wave Domain: A Full Top-Down Approach

    Get PDF
    This paper presents a novel network architecture for an integrated nanosatellite (nSAT)-5G system operating in the millimeter-wave (mmWave) domain. The architecture is realized adopting a delay/disruption tolerant networking (DTN) approach allowing end users to adopt standard devices. A buffer aware contact graph routing algorithm is designed to account for the buffer occupancy of the nSATs and for the connection planning derived from their visibility periods. At the terrestrial uplink, a coded random access is employed to realize a high-capacity interface for the typically irregular traffic of 5G users, while, at the space uplink, the DTN architecture is combined with the contention resolution diversity slotted Aloha protocol to match the recent update of the DVB-RCS2 standard. To achieve a reliable testing of the introduced functionalities, an accurate analysis of the statistic of the signal to interference-plus-noise ratio and of the capture probability at each mmWave link is developed by including interference, shadowing, fading, and noise. The application of the designed architecture to data transfer services in conjunction with possible delay reduction strategies, and an extension to inter-satellite communication, are finally presented by estimating the resulting loss/delay performance through a discrete-time discrete-event platform based on the integration of Matlab with Network Simulator 3

    Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks

    Get PDF
    A wide range of daily-life applications supported by vehicular networks attracted the interest, not only from the research community, but also from governments and the automotive industry. For example, they can be used to enable services that assist drivers on the roads (e.g., road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity), or to enable communications on remote or rural regions where it is not possible to have a common network infrastructure. Nonetheless, the unique properties of vehicular networks raise several challenges that greatly impact the deployment of these networks. Most of the challenges faced by vehicular networks arise from the highly dynamic network topology, which leads to short and sporadic contact opportunities, disruption, variable node density, and intermittent connectivity. This situation makes data dissemination an interesting research topic within the vehicular networking area, which is addressed by this study. The work described along this thesis is motivated by the need to propose new solutions to deal with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant networks (VDTNs). To guarantee the success of data dissemination in vehicular networks scenarios it is important to ensure that network nodes cooperate with each other. However, it is not possible to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the presence of selfish and misbehavior nodes, which may result in a significant decrease of the overall network performance. Thus, cooperative nodes may suffer from the overwhelming load of services from other nodes, which comprises their performance. Trying to solve some of these problems, this thesis presents several proposals and studies on the impact of cooperation, monitoring, and management strategies on the network performance of the VDTN architecture. The main goal of these proposals is to enhance the network performance. In particular, cooperation and management approaches are exploited to improve and optimize the use of network resources. It is demonstrated the performance gains attainable in a VDTN through both types of approaches, not only in terms of bundle delivery probability, but also in terms of wasted resources. The results and achievements observed on this research work are intended to contribute to the advance of the state-of-the-art on methods and strategies for overcome the challenges that arise from the unique characteristics and conceptual design of vehicular networks.O vasto número de aplicações e cenários suportados pelas redes veiculares faz com que estas atraiam o interesse não só da comunidade científica, mas também dos governos e da indústria automóvel. A título de exemplo, estas podem ser usadas para a implementação de serviços e aplicações que podem ajudar os condutores dos veículos a tomar decisões nas estradas, para a disseminação de conteúdos publicitários, ou ainda, para permitir que existam comunicações em zonas rurais ou remotas onde não é possível ter uma infraestrutura de rede convencional. Contudo, as propriedades únicas das redes veiculares fazem com que seja necessário ultrapassar um conjunto de desafios que têm grande impacto na sua aplicabilidade. A maioria dos desafios que as redes veiculares enfrentam advêm da grande mobilidade dos veículos e da topologia de rede que está em constante mutação. Esta situação faz com que este tipo de rede seja suscetível de disrupção, que as oportunidades de contacto sejam escassas e de curta duração, e que a ligação seja intermitente. Fruto destas adversidades, a disseminação dos dados torna-se um tópico de investigação bastante promissor na área das redes veiculares e por esta mesma razão é abordada neste trabalho de investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à disseminação dos dados em ambientes veiculares. Para garantir o sucesso da disseminação dos dados em ambientes veiculares é importante que este tipo de redes garanta a cooperação entre os nós da rede. Contudo, neste tipo de ambientes não é possível garantir um cenário totalmente cooperativo. Este cenário faz com que as redes veiculares sejam suscetíveis à presença de nós não cooperativos que comprometem seriamente o desempenho global da rede. Por outro lado, os nós cooperativos podem ver o seu desempenho comprometido por causa da sobrecarga de serviços que poderão suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de estratégias de cooperação, monitorização e gestão de rede no desempenho das redes veiculares com ligações intermitentes (Vehicular Delay-Tolerant Networks - VDTNs). O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global da rede. Em particular, as estratégias de cooperação e gestão de rede são exploradas para melhorar e optimizar o uso dos recursos da rede. Ficou demonstrado que o uso deste tipo de estratégias e metodologias contribui para um aumento significativo do desempenho da rede, não só em termos de agregados de pacotes (“bundles”) entregues, mas também na diminuição do volume de recursos desperdiçados. Os resultados observados neste trabalho procuram contribuir para o avanço do estado da arte em métodos e estratégias que visam ultrapassar alguns dos desafios que advêm das propriedades e desenho conceptual das redes veiculares

    Progressively communicating rich telemetry from autonomous underwater vehicles via relays

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2012As analysis of imagery and environmental data plays a greater role in mission construction and execution, there is an increasing need for autonomous marine vehicles to transmit this data to the surface. Without access to the data acquired by a vehicle, surface operators cannot fully understand the state of the mission. Communicating imagery and high-resolution sensor readings to surface observers remains a significant challenge – as a result, current telemetry from free-roaming autonomous marine vehicles remains limited to ‘heartbeat’ status messages, with minimal scientific data available until after recovery. Increasing the challenge, longdistance communication may require relaying data across multiple acoustic hops between vehicles, yet fixed infrastructure is not always appropriate or possible. In this thesis I present an analysis of the unique considerations facing telemetry systems for free-roaming Autonomous Underwater Vehicles (AUVs) used in exploration. These considerations include high-cost vehicle nodes with persistent storage and significant computation capabilities, combined with human surface operators monitoring each node. I then propose mechanisms for interactive, progressive communication of data across multiple acoustic hops. These mechanisms include wavelet-based embedded coding methods, and a novel image compression scheme based on texture classification and synthesis. The specific characteristics of underwater communication channels, including high latency, intermittent communication, the lack of instantaneous end-to-end connectivity, and a broadcast medium, inform these proposals. Human feedback is incorporated by allowing operators to identify segments of data thatwarrant higher quality refinement, ensuring efficient use of limited throughput. I then analyze the performance of these mechanisms relative to current practices. Finally, I present CAPTURE, a telemetry architecture that builds on this analysis. CAPTURE draws on advances in compression and delay tolerant networking to enable progressive transmission of scientific data, including imagery, across multiple acoustic hops. In concert with a physical layer, CAPTURE provides an endto- end networking solution for communicating science data from autonomous marine vehicles. Automatically selected imagery, sonar, and time-series sensor data are progressively transmitted across multiple hops to surface operators. Human operators can request arbitrarily high-quality refinement of any resource, up to an error-free reconstruction. The components of this system are then demonstrated through three field trials in diverse environments on SeaBED, OceanServer and Bluefin AUVs, each in different software architectures.Thanks to the National Science Foundation, and the National Oceanic and Atmospheric Administration for their funding of my education and this work

    Unterbrechungstolerante Fahrzeugkommunikation im öffentlichen Personennahverkehr

    Get PDF
    Communication systems play an important role in the efficient operation of public transport networks. Recently, traditional voice-centric real-time communication is complemented and often replaced by data-centric asynchronous machine-to-machine communication. Disruption tolerant networking in combination with license-exempt high bandwidth technologies have the potential to reduce infrastructure investments and operating costs for such applications, because a continuous end-to-end connectivity is no longer required. In this thesis the feasibility of such a system is investigated and confirmed. First, realistic use-cases are introduced and the requirements to the communication system are analyzed. Then the channel characteristics of several WLAN-based technologies are experimentally evaluated in real public transport scenarios. Since the results are promising, the next step is gaining a deeper understanding of the special mobility properties in public transport networks. Therefore, we analyze existing traces as well as our own newly acquired trace. Our trace features additional operator meta-data that is not available for existing traces, and we report on unexpected properties that have not been quantified before. Then the trace is combined with the experimentally obtained channel parameters in order to analyze the characteristics of inter-vehicle contacts. We present the statistical distribution of situation-specific contact events and the impact of radio range on contact capacity. Then results of all steps above are used to propose a routing scheme that is optimized for public transport networks. In the final simulation-based evaluation we show that this router outperforms previously proposed algorithms.Kommunikationssysteme leisten einen wichtigen Beitrag zum effizienten Betrieb des öffentlichen Personennahverkehrs. Seit einigen Jahren wird dabei der Sprechfunk zunehmend durch asynchronen M2M-Datenfunk ergänzt und in vielen Anwendungsgebieten sogar vollständig ersetzt. Die Kombination aus unterbrechungstoleranten Netzwerken und lizenzfreien Drahtlostechnologien birgt ein erhebliches Potential zur Reduzierung von Infrastrukturinvestitionen und Betriebskosten, da für diese Anwendungen eine dauerhafte Ende-zu-Ende Verbindung nicht mehr erforderlich ist. In dieser Arbeit wird die Machbarkeit eines solchen Systems untersucht und belegt. Zunächst werden dazu Anwendungsfälle vorgestellt und deren Anforderungen an das Kommunikationssystem analysiert. Dann werden die Kanalcharakteristika mehrerer WLAN-Technologien im realen ÖPNV-Umfeld experimentell ermittelt und bewertet. Auf Grundlage der erfolgversprechenden Ergebnisse werden im nächsten Schritt die besonderen Mobilitätseigenschaften von ÖPNV-Netzen untersucht. Zu diesen Zweck analysieren wir existierende und eigene, neu aufgezeichnete Bewegungsdaten von ÖPNV-Fahrzeugen. Unsere Daten enthalten dabei zusätzliche Metadaten der Verkehrsbetriebe, die zuvor nicht verfügbar waren, so dass wir unerwartete Effekte beschreiben und erstmals quantifizieren können. Anschließend werden die Bewegungsdaten mit den zuvor experimentell erfassten Kanaleigenschaften kombiniert, um so die Kommunikationskontakte zwischen den Fahrzeugen genauer zu betrachten. Wir stellen die statistische Verteilung der situationsabhängigen Kontaktereignisse vor, sowie den Einfluss der Funkreichweite auf die Kontaktkapazität. Dann werden die Ergebnisse aller vorhergehenden Schritte verwendet, um ein neues, optimiertes Routingverfahren für ÖPNV-Netze vorzuschlagen. In der simulationsbasierten Evaluation belegen wir, dass dieser Router die Leistung bisher bekannter Verfahren übertrifft

    Modelling and Delay Analysis of Intermittently Connected Roadside Communication Networks

    Get PDF
    During the past decade, consumers all over the world have been showing an incremental interest in vehicular technology. The world’s leading vehicle manufacturers have been and are still engaged in continuous competitions to present for today’s sophisticated drivers, vehicles that gratify their demands. This has lead to an outstanding advancement and development of the vehicular manufacturing industry and has primarily contributed to the augmentation of the twenty first century’s vehicle with an appealing and intelligent personality. Particularly, the marriage of information technology to the transport infrastructure gave birth to a novel communication paradigm known as Vehicular Networking. More precisely, being equipped with computerized modules and wireless communication devices, the majority of today’s vehicles qualify to act as typical mobile network nodes that are able to communicate with each other. In addition, these vehicles can as well communicate with other wireless units such as routers, access points, base stations and data posts that are arbitrarily deployed at fixed locations along roadways. These fixed units are referred to as Stationary Roadside Units (SRUs). As a result, ephemeral and self-organized networks can be formed. Such networks are known as Vehicular Networks and constitute the core of the latitudinarian Intelligent Transportation System (ITS) that embraces a wide variety of applications including but not limited to: traffic management, passenger and road safety, environment monitoring and road surveillance, hot-spot guidance, on the fly Internet access, remote region connectivity, information sharing and dissemination, peer-to-peer services and so forth. This thesis presents an in-depth investigation on the possibility of exploiting mobile vehicles to establish connectivity between isolated SRUs. A network of intercommunicating SRUs is referred to as an Intermittently Connected Roadside Communication Network (ICRCN). While inter-vehicular communication as well as vehicle-to-SRU communication has been widely studied in the open literature, the inter-SRU communication has received very little attention. In this thesis, not only do we focus on inter-SRU connectivity establishment through the transport infrastructure but also on the objective of achieving delay-minimal data delivery from a source SRU to a destination SRU in. This delivery process is highly dependent on the vehicular traffic behaviour and more precisely on the arrival times of vehicles to the source SRU as well as these vehicles’ speeds. Vehicle arrival times and speeds are, in turn, highly random and are not available a priori. Under such conditions, the realization of the delay-minimal data delivery objective becomes remarkably challenging. This is especially true since, upon the arrival of vehicles, the source SRU acts on the spur of the moment and evaluates the suitability of the arriving vehicles. Data bundles are only released to those vehicles that contribute the most to the minimization of the average bundle end-to-end delivery delays. Throughout this thesis, several schemes are developed for this purpose. These schemes differ in their enclosed vehicle selection criterion as well as the adopted bundle release mechanism. Queueing models are developed for the purpose of capturing and describing the source SRU’s behaviour as well as the contents of its buffer and the experienced average bundle queueing delay under each of theses schemes. In addition, several mathematical frameworks are established for the purpose of evaluating the average bundle transit delay. Extensive simulations are conducted to validate the developed models and mathematical analyses

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions
    corecore