1,491 research outputs found

    Joint optimization of relay strategies and resource allocations in cooperative cellular networks

    Full text link

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Fairness for optimization in cooperative wireless cellular networks

    Get PDF
    Cooperative communication can improve the performance of cellular mobile networks. The optimization techniques based on duality theory, decomposition and subgradient method were applied for such wireless cellular cooperative systems. It was shown that the joint optimization and resource allocation problem can be solved efficiently within a network utility maximization framework. A concept of proportional fairness was used to achieve fair distribution of quality of service among users. Simulation results confirm the validity of the theoretical work

    Power allocation in wireless multi-user relay networks

    Get PDF
    In this paper, we consider an amplify-and-forward wireless relay system where multiple source nodes communicate with their corresponding destination nodes with the help of relay nodes. Conventionally, each relay equally distributes the available resources to its relayed sources. This approach is clearly sub-optimal since each user experiences dissimilar channel conditions, and thus, demands different amount of allocated resources to meet its quality-of-service (QoS) request. Therefore, this paper presents novel power allocation schemes to i) maximize the minimum signal-to-noise ratio among all users; ii) minimize the maximum transmit power over all sources; iii) maximize the network throughput. Moreover, due to limited power, it may be impossible to satisfy the QoS requirement for every user. Consequently, an admission control algorithm should first be carried out to maximize the number of users possibly served. Then, optimal power allocation is performed. Although the joint optimal admission control and power allocation problem is combinatorially hard, we develop an effective heuristic algorithm with significantly reduced complexity. Even though theoretically sub-optimal, it performs remarkably well. The proposed power allocation problems are formulated using geometric programming (GP), a well-studied class of nonlinear and nonconvex optimization. Since a GP problem is readily transformed into an equivalent convex optimization problem, optimal solution can be obtained efficiently. Numerical results demonstrate the effectiveness of our proposed approach
    corecore