628 research outputs found

    Green Approach for Joint Management of Geo-Distributed Data Centers and Interconnection Networks

    Get PDF
    Every time an Internet user downloads a video, shares a picture, or sends an email, his/her device addresses a data center and often several of them. These complex systems feed the web and all Internet applications with their computing power and information storage, but they are very energy hungry. The energy consumed by Information and Communication Technology (ICT) infrastructures is currently more than 4\% of the worldwide consumption and it is expected to double in the next few years. Data centers and communication networks are responsible for a large portion of the ICT energy consumption and this has stimulated in the last years a research effort to reduce or mitigate their environmental impact. Most of the approaches proposed tackle the problem by separately optimizing the power consumption of the servers in data centers and of the network. However, the Cloud computing infrastructure of most providers, which includes traditional telcos that are extending their offer, is rapidly evolving toward geographically distributed data centers strongly integrated with the network interconnecting them. Distributed data centers do not only bring services closer to users with better quality, but also provide opportunities to improve energy efficiency exploiting the variation of prices in different time zones, the locally generated green energy, and the storage systems that are becoming popular in energy networks. In this paper, we propose an energy aware joint management framework for geo-distributed data centers and their interconnection network. The model is based on virtual machine migration and formulated using mixed integer linear programming. It can be solved using state-of-the art solvers such as CPLEX in reasonable time. The proposed approach covers various aspects of Cloud computing systems. Alongside, it jointly manages the use of green and brown energies using energy storage technologies. The obtained results show that significant energy cost savings can be achieved compared to a baseline strategy, in which data centers do not collaborate to reduce energy and do not use the power coming from renewable resources

    From geographically dispersed data centers towards hierarchical edge computing

    Get PDF
    Internet scale data centers are generally dispersed in different geographical regions. While the main goal of deploying the geographically dispersed data centers is to provide redundancy, scalability and high availability, the geographic dispersity provides another opportunity for efficient employment of global resources, e.g., utilizing price-diversity in electricity markets or utilizing locational diversity in renewable power generation. In other words, an efficient approach for geographical load balancing (GLB) across geo-dispersed data centers not only can maximize the utilization of green energy but also can minimize the cost of electricity. However, due to the different costs and disparate environmental impacts of the renewable energy and brown energy, such a GLB approach should tap on the merits of the separation of green energy utilization maximization and brown energy cost minimization problems. To this end, the notion of green workload and green service rate, versus brown workload and brown service rate, respectively, to facilitate the separation of green energy utilization maximization and brown energy cost minimization problems is proposed. In particular, a new optimization framework to maximize the profit of running geographically dispersed data centers based on the accuracy of the G/D/1 queueing model, and taking into consideration of multiple classes of service with individual service level agreement deadline for each type of service is developed. A new information flow graph based model for geo-dispersed data centers is also developed, and based on the developed model, the achievable tradeoff between total and brown power consumption is characterized. Recently, the paradigm of edge computing has been introduced to push the computing resources away from the data centers to the edge of the network, thereby reducing the communication bandwidth requirement between the sources of data and the data centers. However, it is still desirable to investigate how and where at the edge of the network the computation resources should be provisioned. To this end, a hierarchical Mobile Edge Computing (MEC) architecture in accordance with the principles of LTE Advanced backhaul network is proposed and an auction-based profit maximization approach which effectively facilitates the resource allocation to the subscribers of the MEC network is designed. A hierarchical capacity provisioning framework for MEC that optimally budgets computing capacities at different hierarchical edge computing levels is also designed. The proposed scheme can efficiently handle the peak loads at the access point locations while coping with the resource poverty at the edge. Moreover, the code partitioning problem is extended to a scheduling problem over time and the hierarchical mobile edge network, and accordingly, a new technique that leads to the optimal code partitioning in a reasonable time even for large-sized call trees is proposed. Finally, a novel NOMA augmented edge computing model that captures the gains of uplink NOMA in MEC users\u27 energy consumption is proposed

    Online Social Network Data Placement over Clouds

    Get PDF

    Joint Energy Efficient and QoS-aware Path Allocation and VNF Placement for Service Function Chaining

    Full text link
    Service Function Chaining (SFC) allows the forwarding of a traffic flow along a chain of Virtual Network Functions (VNFs, e.g., IDS, firewall, and NAT). Software Defined Networking (SDN) solutions can be used to support SFC reducing the management complexity and the operational costs. One of the most critical issues for the service and network providers is the reduction of energy consumption, which should be achieved without impact to the quality of services. In this paper, we propose a novel resource (re)allocation architecture which enables energy-aware SFC for SDN-based networks. To this end, we model the problems of VNF placement, allocation of VNFs to flows, and flow routing as optimization problems. Thereafter, heuristic algorithms are proposed for the different optimization problems, in order find near-optimal solutions in acceptable times. The performance of the proposed algorithms are numerically evaluated over a real-world topology and various network traffic patterns. The results confirm that the proposed heuristic algorithms provide near optimal solutions while their execution time is applicable for real-life networks.Comment: Extended version of submitted paper - v7 - July 201

    Cloud Computing cost and energy optimization through Federated Cloud SoS

    Get PDF
    2017 Fall.Includes bibliographical references.The two most significant differentiators amongst contemporary Cloud Computing service providers have increased green energy use and datacenter resource utilization. This work addresses these two issues from a system's architectural optimization viewpoint. The proposed approach herein, allows multiple cloud providers to utilize their individual computing resources in three ways by: (1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control methodology that is tuned to obtain both financial and environmental advantages. It also supports dynamic expansion and contraction of computing capabilities for handling sudden variations in service demand as well as for maximizing usage of time varying green energy supplies. Herein we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent cloud services retain their independent ownership, objectives, funding, and sustainability means. This work analyzes the core SoS requirements, concept synthesis, and functional architecture. It suggests a physical structure that simulates the primary SoS emergent behavior to diminish unwanted outcomes while encouraging desirable results. The report will analyze optimal computing generation methods, optimal energy utilization for computing generation as well as a procedure for building optimal datacenters using a unique hardware computing system design based on the openCompute community as an illustrative collaboration platform. Finally, the research concludes with security features cloud federation requires to support to protect its constituents, its constituents tenants and itself from security risks

    Cost Optimization and Load Balancing of Intra and Inter Data Center Networks to Facilitate Cloud Services

    Get PDF
    Title from PDF of title page viewed January 3, 2019Dissertation advisor: Deep MedhiVitaIncludes bibliographical references (pages 127-137}Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2018For cloud enterprise customers that require services on demand, data centers (DC) must allocate and partition data center resources in a dynamic fashion. We consider the problem of allocating data center resources for cloud enterprise customers who require guaranteed services on demand. In particular, a request from an enterprise customer is mapped to a virtual network (VN) class that is allocated both bandwidth and compute resources by connecting it from an entry point of a data center to one or more hosts while there are multiple geographically distributed data centers to choose from. We take a dynamic trafļ¬c engineering approach over multiple time periods in which an energy aware resource reservation model is solved at each review point. In this dissertation, at ļ¬rst for the energy-aware resource reservation problem, we present a mixed-integer linear programming (MILP) formulation (for small-scale problems) and a heuristic approach (for large-scale problems). Our heuristic is fast for solving large-scale problems where the MILP problem becomes difļ¬cult to solve. Through a comprehensive set of studies, we found that a VN class with a low resource requirement has a low blocking even in heavy trafļ¬c, while the VN class with a high resource requirement faces a high service denial. Furthermore, the VN class having randomly distributed resource requirement has a high provisioning cost and blocking compared to the VN class having the same resource requirement for each request although the average resource requirement is same for both these VN classes. We also observe that our approach reduces the maximum energy consumption by about one-sixth at the low arrival rate to by about one-third at the highest arrival rate which also depends on how many different CPU frequency levels a server can run at. Allocation of resources in data centers needs to be done in a dynamic fashion for cloud enterprise customers who require virtualized reservation-oriented services on demand. Due to the spatial diversity of data centers, the cost of using different DCs also varies. In this dissertation, we then propose an allocation scheme to balance the load among these DCs with different cost to minimize the total provisioning cost in a dynamic environment while ensuring that the service level agreements (SLAs) are met. Compared to a benchmark scheme (where all requests are ļ¬rst sent to the cheapest data center), our scheme can decrease the proportional utilization from 24% (for heavy load) to 30% (for normal load) and achieve a signiļ¬cant balance in the cost incurred by individual DCs. Our scheme can also achieve 7.5% reduction in total provisioning cost under certain service level agreement (SLA) in exchange of low increment in blocking. Furthermore, we tested our scheme on 5 DCs to show that our allocation schemes follows the weighted cost proportionally. With the increasing dependency of cloud-based services, data centers have be come a popular platform to satisfy customersā€™ requests. Many large network providers now have their own geographically distributed DCs for cloud services, or have partner ships with third party DC providers to route customersā€™ demand. When end customersā€™ re quests arrive at a Point-of-Presence (PoP) of a large Internet Service Provider, the provider having DCs in multiple geo-locations needs to decide which DC should serve the request depending on the geo-distance, cost of resources in that DC, availability of the requested resource at that DC, and congestion in the path from the customersā€™ location to that DC. Therefore, an optimal connectivity scheme from the ingress PoP to egress DC is required among the PoPs and DCs to minimize the cost of establishing paths between a PoP and a DC while ensuring load balancing in both the link level and DC level. Considering these, we also present a novel mix-integer linear programming (MILP) model for this problem. We show the efļ¬cacy of our model through various performance metrics such as average and maximum link utilization, and average number of links used per path.Introduction -- Literature review -- Model and heuristic for intra DC cost optimization -- Simulation setup and result analysis for intra DC cost optimization -- Load balancing in geo-distributed data centers -- Optimal connectivity between inter DC networks -- Conclusion and future research -- Appendix A. Intra DC optimization model in AMPL -- Appendix B. Optimal connectivity to inter DC network model in AMP

    Elastic admission control for federated cloud services

    Get PDF
    This paper presents a technique for admission control of a set of horizontally scalable services, and their optimal placement, into a federated Cloud environment. In the proposed model, the focus is on hosting elastic services whose resource requirements may dynamically grow and shrink, depending on the dynamically varying number of users and patterns of requests. The request may also be partially accommodated in federated external providers, if needed or more convenient. In finding the optimum allocation, the presented mechanism uses a probabilistic optimization model, which takes into account eco-efficiency and cost, as well as affinity and anti-affinity rules possibly in place for the components that comprise the services. In addition to modelling and solving the exact optimization problem, we also introduce a heuristic solver that exhibits a reduced complexity and solving time. We show evaluation results for the proposed technique under various scenarios

    Minimizing energy costs for geographically distributed heterogeneous data centers

    Get PDF
    2018 Summer.Includes bibliographical references.The recent proliferation and associated high electricity costs of distributed data centers have motivated researchers to study energy-cost minimization at the geo-distributed level. The development of time-of-use (TOU) electricity pricing models and renewable energy source models has provided the means for researchers to reduce these high energy costs through intelligent geographical workload distribution. However, neglecting important considerations such as data center cooling power, interference effects from task co-location in servers, net-metering, and peak demand pricing of electricity has led to sub-optimal results in prior work because these factors have a significant impact on energy costs and performance. In this thesis, we propose a set of workload management techniques that take a holistic approach to the energy minimization problem for geo-distributed data centers. Our approach considers detailed data center cooling power, co-location interference, TOU electricity pricing, renewable energy, net metering, and peak demand pricing distribution models. We demonstrate the value of utilizing such information by comparing against geo-distributed workload management techniques that possess varying amounts of system information. Our simulation results indicate that our best proposed technique is able to achieve a 61% (on average) cost reduction compared to state-of-the-art prior work
    • ā€¦
    corecore