840 research outputs found

    Impact of Variable Ordering Cost and Promotional Effort Cost in Deteriorated Economic Order Quantity (EOQ) Model

    Full text link
    The instantaneous economic order quantity (EOQ) profit optimization model for deteriorating items is introduced for analyzing the impact of variable ordering cost and promotional effort cost for leveraging profit margins in finite planning horizons. The objective of this model is to maximize the net profit so as to determine the order quantity and promotional effort factor. For any given number of replenishment cycles the existence of a unique optimal replenishment schedule are proved and further the concavity of the net profit function of the inventory system in the number of replenishments is established. The numerical analysis shows that an appropriate policy can benefit the retailer, especially for deteriorating items. Finally, sensitivity analyses with respect to the major parameters are also studied to draw managerial decisions in production systems

    Grocery omnichannel perishable inventories: performance measures and influencing factors

    Get PDF
    Purpose- Perishable inventory management for the grocery sector has become more challenging with extended omnichannel activities and emerging consumer expectations. This paper aims to identify and formalize key performance measures of omnichannel perishable inventory management (OCPI) and explore the influence of operational and market-related factors on these measures. Design/methodology/approach- The inductive approach of this research synthesizes three performance measures (product waste, lost sales and freshness) and four influencing factors (channel effect, demand variability, product perishability and shelf life visibility) for OCPI, through industry investigation, expert interviews and a systematic literature review. Treating OCPI as a complex adaptive system and considering its transaction costs, this paper formalizes the OCPI performance measures and their influencing factors in two statements and four propositions, which are then tested through numerical analysis with simulation. Findings- Product waste, lost sales and freshness are identified as distinctive OCPI performance measures, which are influenced by product perishability, shelf life visibility, demand variability and channel effects. The OCPI sensitivity to those influencing factors is diverse, whereas those factors are found to moderate each other's effects. Practical implications- To manage perishables more effectively, with less waste and lost sales for the business and fresher products for the consumer, omnichannel firms need to consider store and online channel requirements and strive to reduce demand variability, extend product shelf life and facilitate item-level shelf life visibility. While flexible logistics capacity and dynamic pricing can mitigate demand variability, the product shelf life extension needs modifications in product design, production, or storage conditions. OCPI executives can also increase the product shelf life visibility through advanced stock monitoring/tracking technologies (e.g. smart tags or more comprehensive barcodes), particularly for the online channel which demands fresher products. Originality/value- This paper provides a novel theoretical view on perishables in omnichannel systems. It specifies the OCPI performance, beyond typical inventory policies for cost minimization, while discussing its sensitivity to operations and market factors

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Imperfect quality items in inventory and supply chain management

    Get PDF
    The assumption that all items are of good quality is technologically unattainable in most supply chain applications. Moreover, inventory theories are often built upon the assumption that the rates of demand, screening, deterioration and defectiveness are constant and known, even though this is rarely the case in practice. In addition, the classical formulation of a two-warehouse inventory model is often based on the Last-In-First-Out (LIFO) or First-In-First-Out (FIFO) dispatching policy. The LIFO policy relies upon inventory stored in a rented warehouse (RW), with an ample capacity, being consumed first, before depleting inventory of an owned warehouse (OW) that has a limited capacity. Consumption works the other way around for the FIFO policy. This PhD research aims to advance the current state of knowledge in the field of inventory mathematical modelling and management by means of providing theoretically valid and empirically viable generalised inventory frameworks to assist inventory managers towards the determination of optimum order/production quantities that minimise the total system cost. The aim is reflected on the following six objectives: 1) to explore the implications of the inspection process in inventory decision-making and link such process with the management of perishable inventories; 2) to derive a general, step-by-step solution procedure for continuous intra-cycle periodic review applications; 3) to demonstrate how the terms “deterioration”, “perishability” and “obsolescence” may collectively apply to an item; 4) to develop a new dispatching policy that is associated with simultaneous consumption fractions from an owned warehouse (OW) and a rented warehouse (RW). The policy developed is entitled “Allocation-In-Fraction-Out (AIFO)”; 5) to relax the inherent determinism related to the maximum fulfilment of the capacity of OW to maximising net revenue; and 6) to assess the impact of learning on the operational and financial performance of an inventory system with a two-level storage. Four general Economic Order Quantity (EOQ) models for items with imperfect quality are presented. The first model underlies an inventory system with a singlelevel storage (OW) and the other three models relate to an inventory system with a two-level storage (OW and RW). The three models with a two-level storage underlie, respectively, the LIFO, FIFO and AIFO dispatching policies. Unlike LIFO and FIFO, AIFO implies simultaneous consumption fractions associated with RW and OW. That said, the goods at both warehouses are depleted by the end of the same cycle. This necessitates the introduction of a key performance indicator to trade-off the costs associated with AIFO, LIFO and FIFO. Each lot that is delivered to the sorting facility undergoes a 100 per cent screening and the percentage of defective items per lot reduces according to a learning curve. The mathematical formulation reflects a diverse range of time-varying forms. The behaviour of time-varying demand, screening and deterioration rates, defectiveness, and value of information (VOI) are tested. Special cases that demonstrate application of the theoretical models in different settings lead to the generation of interesting managerial insights. For perishable products, we demonstrate that LIFO and FIFO may not be the right dispatching policies. Further, relaxing the inherent determinism of the maximum capacity associated with OW, not only produces better results and implies comprehensive learning,but may also suggest outsourcing the inventory holding through vendor managed inventory

    Sustainable Inventory Management Model for High-Volume Material with Limited Storage Space under Stochastic Demand and Supply

    Get PDF
    Inventory management and control has become an important management function, which is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several research studies attempted to develop models to be used to minimise the quantities of excess inventory, in order to reduce their associated costs without compromising both operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model is one of the most used of these models; however, this model has a number of limiting assumptions, which led to the development of a number of extensions for this model to increase its applicability to the modern-day business environment. Therefore, in this research study, a sustainable inventory management model is developed based on the EOQ concept to optimise the ordering and storage of large-volume inventory, which deteriorates over time, with limited storage space, such as steel, under stochastic demand, supply and backorders. Two control systems were developed and tested in this research study in order to select the most robust system: an open-loop system, based on direct control through which five different time series for each stochastic variable were generated, before an attempt to optimise the average profit was conducted; and a closed-loop system, which uses a neural network, depicting the different business and economic conditions associated with the steel manufacturing industry, to generate the optimal control parameters for each week across the entire planning horizon. A sensitivity analysis proved that the closed-loop neural network control system was more accurate in depicting real-life business conditions, and more robust in optimising the inventory management process for a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. This model is implemented throughout the research in the case of a steel manufacturing factory under different operational and extreme economic scenarios. As a result of the case study, the developed model proved its robustness and accuracy in managing the inventory of such a unique industry

    Modelling and Determining Inventory Decisions for Improved Sustainability in Perishable Food Supply Chains

    Get PDF
    Since the introduction of sustainable development, industries have witnessed significant sustainability challenges. Literature shows that the food industry is concerned about its need for efficient and effective management practices in dealing with perishability and the requirements for conditioned storage and transport of food products that effect the environment. Hence, the environmental part of sustainability demonstrates its significance in this industrial sector. Despite this, there has been little research into environmentally sustainable inventory management of deteriorating items. This thesis presents mathematical modelling based research for production inventory systems in perishable food supply chains. In this study, multi-objective mixed-integer linear programming models are developed to determine economically and environmentally optimal production and inventory decisions for a two-echelon supply chain. The supply chain consists of single sourcing suppliers for raw materials and a producer who operates under a make-to-stock or make-to-order strategy. The demand facing the producer is non-stationary stochastic in nature and has requirements in terms of service level and the remaining shelf life of the marketed products. Using data from the literature, numerical examples are given in order to test and analyse these models. The computational experiments show that operational adjustments in cases where emission and cost parameters were not strongly correlated with supply chain collaboration (where suppliers and a producer operate under centralised control), emissions are effectively reduced without a significant increase in cost. The findings show that assigning a high disposal cost, limit or high weight of importance to perished goods leads to appropriate reduction of expected waste in the supply chain with no major cost increase. The research has made contributions to the literature on sustainable production and inventory management; providing formal models that can be used as an aid to understanding and as a tool for planning and improving sustainable production and inventory control in supply chains involving deteriorating items, in particular with perishable food supply chains.the Ministry of Science and Technology, the Royal Thai Government

    Discounting and dynamic shelf life to reduce fresh food waste at retailers

    Get PDF
    Approximately 89 million of tonnes of food is wasted every year in the EU along the whole food supply chain. The reasons for food waste by retailers include inappropriate quality control, overstocking and inaccurate forecasting. This study shows that food wasted by retailers can be reduced by discounting old products or by applying a dynamically adjustable expiration date (in other words dynamic shelf life (DSL)). We developed a simulation based optimization model to optimize the replenishment and discounting policy of a retailer who sells meat products. DSL outperforms a fixed shelf life (FSL) in terms of profit, waste, shortages and food safety. Furthermore, replenishment quantities can be higher. The benefits of DSL are greater when demand is low or when the shelf life of products is short. Discounting is a successful strategy to reduce food waste for both FSL and DSL. DSL without discounting is more effective than FSL with discounting. Combining DSL and discounting, allows for a further reduction of food waste.</p
    • …
    corecore