84 research outputs found

    Estimation, Decision and Applications to Target Tracking

    Get PDF
    This dissertation mainly consists of three parts. The first part proposes generalized linear minimum mean-square error (GLMMSE) estimation for nonlinear point estimation. The second part proposes a recursive joint decision and estimation (RJDE) algorithm for joint decision and estimation (JDE). The third part analyzes the performance of sequential probability ratio test (SPRT) when the log-likelihood ratios (LLR) are independent but not identically distributed. The linear minimum mean-square error (LMMSE) estimation plays an important role in nonlinear estimation. It searches for the best estimator in the set of all estimators that are linear in the measurement. A GLMMSE estimation framework is proposed in this disser- tation. It employs a vector-valued measurement transform function (MTF) and finds the best estimator among all estimators that are linear in MTF. Several design guidelines for the MTF based on a numerical example were provided. A RJDE algorithm based on a generalized Bayes risk is proposed in this dissertation for dynamic JDE problems. It is computationally efficient for dynamic problems where data are made available sequentially. Further, since existing performance measures for estimation or decision are effective to evaluate JDE algorithms, a joint performance measure is proposed for JDE algorithms for dynamic problems. The RJDE algorithm is demonstrated by applications to joint tracking and classification as well as joint tracking and detection in target tracking. The characteristics and performance of SPRT are characterized by two important functions—operating characteristic (OC) and average sample number (ASN). These two functions have been studied extensively under the assumption of independent and identically distributed (i.i.d.) LLR, which is too stringent for many applications. This dissertation relaxes the requirement of identical distribution. Two inductive equations governing the OC and ASN are developed. Unfortunately, they have non-unique solutions in the general case. They do have unique solutions in two special cases: (a) the LLR sequence converges in distributions and (b) the LLR sequence has periodic distributions. Further, the analysis can be readily extended to evaluate the performance of the truncated SPRT and the cumulative sum test

    Radar networks: A review of features and challenges

    Full text link
    Networks of multiple radars are typically used for improving the coverage and tracking accuracy. Recently, such networks have facilitated deployment of commercial radars for civilian applications such as healthcare, gesture recognition, home security, and autonomous automobiles. They exploit advanced signal processing techniques together with efficient data fusion methods in order to yield high performance of event detection and tracking. This paper reviews outstanding features of radar networks, their challenges, and their state-of-the-art solutions from the perspective of signal processing. Each discussed subject can be evolved as a hot research topic.Comment: To appear soon in Information Fusio

    A theoretical analysis of Bayes-optimal multi-target tracking and labelling

    Get PDF
    In multi-target tracking (MTT), we are often interested not only in finding the position of the multiple objects, but also allowing individual objects to be uniquely identified with the passage of time, by placing a label on each track. While there are many MTT algorithms that produce uniquely identified tracks as output, most of them make use of certain heuristics and/or unrealistic assumptions that makes the global result suboptimal of Bayesian sense. An innovative way of performing MTT is the so-called joint multi-target tracking, where the raw output of the algorithm, rather than being already the collection of output tracks, is a multi-target density calculated by approximating the Bayesian recursion that considers the entire system to have a single multidimensional state. The raw output, i.e. the calculated multi-target density, is thereafter processed to obtain output tracks to be displayed to the operator. This elegant approach, at least in theory, would allow us to precisely represent multi-target statistics. However, most joint MTT methods in the literature handle the problem of track labelling in an ad-hoc, i.e. non-Bayesian manner. A number of methods, however, have suggested that the multi-target density, calculated using the Bayesian recursion, should contain information not only about the location of the individual objects but also their identities. This approach, that we refer as joint MTTL (joint multi-target tracking and labelling), looks intuitively advantageous. It would allow us, at least in theory, to obtain an output consisting of labelled tracks that is optimal in Bayesian sense. Moreover, it would allow us to have statistical information about the assigned labels; for instance, we would know what is the probability that track swap may have occurred after some approximation of targets (or, in simpler words, we would know how much we can believe that a target is what the display says that it is). However, the methods proposed in the still emerging joint MTTL literature do not address some problems that may considerably reduce the usefulness of the approach. These problems include: track coalescence after targets move closely to each other, gradual loss of ambiguity information when particle filters or multiple hypotheses approaches are used, and dealing with unknown/varying number of targets. As we are going to see, each of the previously proposed methods handles only a subset of these problems. Moreover, while obtaining a Bayes-optimal output of labelled tracks is one of the main motivations for joint MTTL, how such output should be obtained is a matter of debate. This work will tackle the joint MTTL problem together with a companion memorandum. In this work, we look at the problem from a theoretical perspective, i.e. we aim to provide an accurate and algorithm-independent picture of the aforementioned problems. An algorithm that actually handles these problems will be proposed in the companion memorandum. As one of the contributions of the memorandum, we clearly characterize the so-called "mixed labelling" phenomenon that leads to track coalescence and other problems, and we verify that, unlike implied in previous literature, it is a physical phenomenon inherent of the MTTL problem rather than specific to a particular approach. We also show how mixed labelling leads to nontrivial issues in practical implementations of joint MTTL. As another of the contributions of the memorandum, we propose a conceptual, algorithm-independent track extraction method for joint MTTL estimators, that gives an output with clear physical interpretation for the user

    A Gaussian inverse Wishart PHD Filter using Stochastic Partitioning for Multiple Extended Object Tracking

    Get PDF
    This thesis deals with the object tracking problem of multiple extended objects. For instance, this tracking problem occurs when a car with sensors drives on the road and detects multiple other cars in front of it. When the setup between the senor and the other cars is in a such way that multiple measurements are created by each single car, the cars are called extended objects. This can occur in real world scenarios, mainly with the use of high resolution sensors in near field applications. Such a near field scenario leads a single object to occupy several resolution cells of the sensor so that multiple measurements are generated per scan. The measurements are additionally superimposed by the sensor’s noise. Beside the object generated measurements, there occur false alarms, which are not caused by any object and sometimes in a sensor scan, single objects could be missed so that they not generate any measurements. To handle these scenarios, object tracking filters are needed to process the sensor measurements in order to obtain a stable and accurate estimate of the objects in each sensor scan. In this thesis, the scope is to implement such a tracking filter that handles the extended objects, i.e. the filter estimates their positions and extents. In context of this, the topic of measurement partitioning occurs, which is a pre-processing of the measurement data. With the use of partitioning, the measurements that are likely generated by one object are put into one cluster, also called cell. Then, the obtained cells are processed by the tracking filter for the estimation process. The partitioning of measurement data is a crucial part for the performance of tracking filter because insufficient partitioning leads to bad tracking performance, i.e. inaccurate object estimates. In this thesis, a Gaussian inverse Wishart Probability Hypothesis Density (GIW-PHD) filter was implemented to handle the multiple extended object tracking problem. Within this filter framework, the number of objects are modelled as Random Finite Sets (RFSs) and the objects’ extent as random matrices (RM). The partitioning methods that are used to cluster the measurement data are existing ones as well as a new approach that is based on likelihood sampling methods. The applied classical heuristic methods are Distance Partitioning (DP) and Sub-Partitioning (SP), whereas the proposed likelihood-based approach is called Stochastic Partitioning (StP). The latter was developed in this thesis based on the Stochastic Optimisation approach by Granström et al. An implementation, including the StP method and its integration into the filter framework, is provided within this thesis. The implementations, using the different partitioning methods, were tested on simulated random multi-object scenarios and in a fixed parallel tracking scenario using Monte Carlo methods. Further, a runtime analysis was done to provide an insight into the computational effort using the different partitioning methods. It emphasized, that the StP method outperforms the classical partitioning methods in scenarios, where the objects move spatially close. The filter using StP performs more stable and with more accurate estimates. However, this advantage is associated with a higher computational effort compared to the classical heuristic partitioning methods

    Predicting Multiple Target Tracking Performance for Applications on Video Sequences

    Get PDF
    This dissertation presents a framework to predict the performance of multiple target tracking (MTT) techniques. The framework is based on the mathematical descriptors of point processes, the probability generating functional (p.g.fl). It is shown that conceptually the p.g.fls of MTT techniques can be interpreted as a transform that can be marginalized to an expression that encodes all the information regarding the likelihood model as well as the underlying assumptions present in a given tracking technique. In order to use this approach for tracker performance prediction in video sequences, a framework that combines video quality assessment concepts and the marginalized transform is introduced. The multiple hypothesis tracker (MHT), Joint Probabilistic Data Association (JPDA), Markov Chain Monte Carlo (MCMC) data association, and the Probability Hypothesis Density filter (PHD) are used as a test cases. We introduce their transforms and perform a numerical comparison to predict their performance under identical conditions. We also introduce the concepts that present the base for estimation in general and for applications in computer vision

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure
    • …
    corecore