2,194 research outputs found

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review

    Get PDF
    Over the last decade, there has been an increased interest in developing aerial robotic platforms that exhibit grasping and perching capabilities not only within the research community but also in companies across different industry sectors. Aerial robots range from standard multicopter vehicles/drones, to autonomous helicopters, and fixed-wing or hybrid devices. Such devices rely on a range of different solutions for achieving grasping and perching. These solutions can be classified as: 1) simple gripper systems, 2) arm-gripper systems, 3) tethered gripping mechanisms, 4) reconfigurable robot frames, 5) adhesion solutions, and 6) embedment solutions. Grasping and perching are two crucial capabilities that allow aerial robots to interact with the environment and execute a plethora of complex tasks, facilitating new applications that range from autonomous package delivery and search and rescue to autonomous inspection of dangerous or remote environments. In this review paper, we present the state-of-the-art in aerial grasping and perching mechanisms and we provide a comprehensive comparison of their characteristics. Furthermore, we analyze these mechanisms by comparing the advantages and disadvantages of the proposed technologies and we summarize the significant achievements in these two research topics. Finally, we conclude the review by suggesting a series of potential future research directions that we believe that are promising

    Hypermobile Robots

    Get PDF

    A New Approach to Dynamic Modeling of Continuum Robots

    Get PDF
    ABSTRACT In this thesis, a new approach for developing practically realizable dynamic models for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for analyzing the capabilities of continuum manipulators to be employed in various real world applications has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers). It is shown that this model, although an approximation to a continuum structure, can be used to conveniently analyze the dynamics of the arm with suitable tradeoff in accuracy of modeling. This relatively simple model is more plausible to implement in an actual real-time controller when compared to other techniques of modeling continuum arms. Principles of Lagrangian dynamics are used to derive the expressions for the generalized forces in the system. The force exerted by McKibben actuators at different pressure level - length pairs is characterized and is incorporated into this dynamic model. The constraints introduced in the analytical model conform to the physical and operational limitations of the Octarm VI continuum robot manipulator. The model is validated by comparing the results of numerical simulation with the physical measurements of a continuum arm prototype built using McKibben actuators. Based on the new lumped parameter dynamic model developed for continuum robots, a technique for deducing measures of manipulability, forces and impacts that can be sustained or imparted by the tip of a continuum robot has been developed. These measures are represented in the form of ellipsoids whose volume and orientation gives information about the various functional capabilities (end effector velocities, forces and impacts) of the arm at a particular configuration. The above mentioned ellipsoids are exemplified for different configurations of the continuum section arm and their physical significances are analyzed. The new techniques proposed and methodologies adopted in this thesis supported by experimental results represent a significant contribution to the field of continuum robots

    A Tread/Limb/Serpentine Hybrid Robot: Toward Hypermobility in Deconstructed Environments

    Get PDF
    According to the Red Cross, an average of over 600 disasters and 100,000 associated deaths occur annually throughout the world. This frequency of disasters strains an already overburdened disaster response effort. In the first 48 hours of a rescue operation, it is estimated that a responder will get less than three hours of continuous sleep as they need to work at full force to set up the operation and begin work in the field. This leads to sleep deprivation during the most critical time for search and rescue of victims. Therefore, robots are greatly needed as a force multiplier in USAR response to reduce some of the burden and workload placed on the human rescue workers to make for a more efficient and effective response

    Predictive Context-Based Adaptive Compliance for Interaction Control of Robot Manipulators

    Get PDF
    In classical industrial robotics, robots are concealed within structured and well-known environments performing highly-repetitive tasks. In contrast, current robotic applications require more direct interaction with humans, cooperating with them to achieve a common task and entering home scenarios. Above all, robots are leaving the world of certainty to work in dynamically-changing and unstructured environments that might be partially or completely unknown to them. In such environments, controlling the interaction forces that appear when a robot contacts a certain environment (be the environment an object or a person) is of utmost importance. Common sense suggests the need to leave the stiff industrial robots and move towards compliant and adaptive robot manipulators that resemble the properties of their biological counterpart, the human arm. This thesis focuses on creating a higher level of intelligence for active compliance control methods applied to robot manipulators. This work thus proposes an architecture for compliance regulation named Predictive Context-Based Adaptive Compliance (PCAC) which is composed of three main components operating around a 'classical' impedance controller. Inspired by biological systems, the highest-level component is a Bayesian-based context predictor that allows the robot to pre-regulate the arm compliance based on predictions about the context the robot is placed in. The robot can use the information obtained while contacting the environment to update its context predictions and, in case it is necessary, to correct in real time for wrongly predicted contexts. Thus, the predictions are used both for anticipating actions to be taken 'before' proceeding with a task as well as for applying real-time corrective measures 'during' the execution of a in order to ensure a successful performance. Additionally, this thesis investigates a second component to identify the current environment among a set of known environments. This in turn allows the robot to select the proper compliance controller. The third component of the architecture presents the use of neuroevolutionary techniques for selecting the optimal parameters of the interaction controller once a certain environment has been identified

    Human-friendly robotic manipulators: safety and performance issues in controller design

    Get PDF
    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Successful and flourishing deployment of such robots present different opportunities as well as challenges. Under a national research project, Bobbie, this dissertation analyzes challenges associated with these robots and proposes solutions for identified problems. The thesis begins by highlighting the important safety concern and presenting a comprehensive overview of safety issues in a typical domestic robot system. By using functional safety concept, the overall safety of the complex robotic system was analyzed through subsystem level safety issues. Safety regions in the world model of the perception subsystem, dependable understanding of the unstructured environment via fusion of sensory subsystems, lightweight and compliant design of mechanical components, passivity based control system and quantitative metrics used to assert safety are some important points discussed in the safety review. The main research focus of this work is on controller design of robotic manipulators against two conflicting requirements: motion performance and safety. Human-friendly manipulators used on domestic robots exhibit a lightweight design and demand a stable operation with a compliant behavior injected via a passivity based impedance controller. Effective motion based manipulation using such a controller requires a highly stiff behavior while important safety requirements are achieved with compliant behaviors. On the basis of this intuitive observation, this research identifies suitable metrics to identify the appropriate impedance for a given performance and safety requirement. This thesis also introduces a domestic robot design that adopts a modular design approach to minimize complexity, cost and development time. On the basis of functional modularity concept where each module has a unique functional contribution in the system, the robot “Bobbie-UT‿ is built as an interconnection of interchangeable mobile platform, torso, robotic arm and humanoid head components. Implementation of necessary functional and safety requirements, design of interfaces and development of suitable software architecture are also discussed with the design

    Aerial Manipulators for Contact-based Interaction

    Get PDF

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    • …
    corecore