2,344 research outputs found

    Integrated production quality and condition-based maintenance optimisation for a stochastically deteriorating manufacturing system

    Get PDF
    This paper investigates the problem of optimally integrating production quality and condition-based maintenance in a stochastically deteriorating single- product, single-machine production system. Inspections are periodically performed on the system to assess its actual degradation status. The system is considered to be in ‘fail mode’ whenever its degradation level exceeds a predetermined threshold. The proportion of non-conforming items, those that are produced during the time interval where the degradation is beyond the specification threshold, are replaced either via overtime production or spot market purchases. To optimise preventive maintenance costs and at the same time reduce production of non-conforming items, the degradation of the system must be optimally monitored so that preventive maintenance is carried out at appropriate time intervals. In this paper, an integrated optimisation model is developed to determine the optimal inspection cycle and the degradation threshold level, beyond which preventive maintenance should be carried out, while minimising the sum of inspection and maintenance costs, in addition to the production of non-conforming items and inventory costs. An expression for the total expected cost rate over an infinite time horizon is developed and solution method for the resulting model is discussed. Numerical experiments are provided to illustrate the proposed approach

    Integration of production, maintenance and quality : Modelling and solution approaches

    Get PDF
    Dans cette thèse, nous analysons le problème de l'intégration de la planification de production et de la maintenance préventive, ainsi que l'élaboration du système de contrôle de la qualité. Premièrement, on considère un système de production composé d'une machine et de plusieurs produits dans un contexte incertain, dont les prix et le coût changent d'une période à l'autre. La machine se détériore avec le temps et sa probabilité de défaillance, ainsi que le risque de passage à un état hors contrôle augmentent. Le taux de défaillance dans un état dégradé est plus élevé et donc, des coûts liés à la qualité s’imposent. Lorsque la machine tombe en panne, une maintenance corrective ou une réparation minimale seront initiées pour la remettre en marche sans influer ses conditions ou le processus de détérioration. L'augmentation du nombre de défaillances de la machine se traduit par un temps d'arrêt supérieur et un taux de disponibilité inférieur. D'autre part, la réalisation des plans de production est fortement influencée par la disponibilité et la fiabilité de la machine. Les interactions entre la planification de la maintenance et celle de la production sont incorporées dans notre modèle mathématique. Dans la première étape, l'effet de maintenance sur la qualité est pris en compte. La maintenance préventive est considérée comme imparfaite. La condition de la machine est définie par l’âge actuel, et la machine dispose de plusieurs niveaux de maintenance avec des caractéristiques différentes (coûts, délais d'exécution et impacts sur les conditions du système). La détermination des niveaux de maintenance préventive optimaux conduit à un problème d’optimisation difficile. Un modèle de maximisation du profit est développé, dans lequel la vente des produits conformes et non conformes, les coûts de la production, les stocks tenus, la rupture de stock, la configuration de la machine, la maintenance préventive et corrective, le remplacement de la machine et le coût de la qualité sont considérés dans la fonction de l’objectif. De plus, un système composé de plusieurs machines est étudié. Dans cette extension, les nombres optimaux d’inspections est également considéré. La fonction de l’objectif consiste à minimiser le coût total qui est la somme des coûts liés à la maintenance, la production et la qualité. Ensuite, en tenant compte de la complexité des modèles préposés, nous développons des méthodes de résolution efficaces qui sont fondées sur la combinaison d'algorithmes génétiques avec des méthodes de recherches locales. On présente un algorithme mimétique qui emploi l’algorithme Nelder-Mead, avec un logiciel d'optimisation pour déterminer les valeurs exactes de plusieurs variables de décisions à chaque évaluation. La méthode de résolution proposée est comparée, en termes de temps d’exécution et de qualités des solutions, avec plusieurs méthodes Métaheuristiques. Mots-clés : Planification de la production, Maintenance préventive imparfaite, Inspection, Qualité, Modèles intégrés, MétaheuristiquesIn this thesis, we study the integrated planning of production, maintenance, and quality in multi-product, multi-period imperfect systems. First, we consider a production system composed of one machine and several products in a time-varying context. The machine deteriorates with time and so, the probability of machine failure, or the risk of a shift to an out-of-control state, increases. The defective rate in the shifted state is higher and so, quality related costs will be imposed. When the machine fails, a corrective maintenance or a minimal repair will be initiated to bring the machine in operation without influencing on its conditions or on the deterioration process. Increasing the expected number of machine failures results in a higher downtime and a lower availability rate. On the other hand, realization of the production plans is significantly influenced by the machine availability and reliability. The interactions between maintenance scheduling and production planning are incorporated in the mathematical model. In the first step, the impact of maintenance on the expected quality level is addressed. The maintenance is also imperfect and the machine conditions after maintenance can be anywhere between as-good-as-new and as-bad-as-old situations. Machine conditions are stated by its effective age, and the machine has several maintenance levels with different costs, execution times, and impacts on the system conditions. High level maintenances on the one hand have greater influences on the improvement of the system state and on the other hand, they occupy more the available production time. The optimal determination of such preventive maintenance levels to be performed at each maintenance intrusion is a challenging problem. A profit maximization model is developed, where the sale of conforming and non-conforming products, costs of production, inventory holding, backorder, setup, preventive and corrective maintenance, machine replacement, and the quality cost are addressed in the objective function. Then, a system with multiple machines is taken into account. In this extension, the number of quality inspections is involved in the joint model. The objective function minimizes the total cost which is the sum of maintenance, production and quality costs. In order to reduce the gap between the theory and the application of joint models, and taking into account the complexity of the integrated problems, we have developed an efficient solution method that is based on the combination of genetic algorithms with local search and problem specific methods. The proposed memetic algorithm employs Nelder-Mead algorithm along with an optimization package for exact determination of the values of several decision variables in each chromosome evolution. The method extracts not only the positive knowledge in good solutions, but also the negative knowledge in poor individuals to determine the algorithm transitions. The method is compared in terms of the solution time and quality to several heuristic methods. Keywords : Multi-period production planning, Imperfect preventive maintenance, Inspection, Quality, Integrated model, Metaheuristic

    Integrated Production and Maintenance Planning for Flow Line Systems

    Get PDF
    This study extends the investigation of the capacitated lot-sizing problem to the production and maintenance planning in unreliable flow line systems. An integrated modelling framework is proposed with the aim of seeking a cost-optimal plan for both production and maintenance. In the model, preventive maintenance is scheduled to avoid unplanned failures, and corrective maintenance is carried out in any machine in which an unplanned failure occurs. A regression-based approximation approach was introduced to calculate the production time under random failures. Then, the integrated planning model can be solved by any commercial optimization software. The numerical example demonstrates that the integrated model guarantees the effectiveness of the production and maintenance plan. It also showed that the buffer capacity has significant effects on the capacity utilization

    Study on New Sampling Plans and Optimal Integration with Proactive Maintenance in Production Systems

    Get PDF
    Sampling plans are statistical process control (SPC) tools used mainly in production processes. They are employed to control processes by monitoring the quality of produced products and alerting for necessary adjustments or maintenance. Sampling is used when an undesirable change (shift) in a process is unobservable and needs time to discover. Basically, the shift occurs when an assignable cause affects the process. Wrong setups, defective raw materials, degraded components are examples of assignable causes. The assignable cause causes a variable (or attribute) quality characteristic to shift from the desired state to an undesired state. The main concern of sampling is to observe a process shift quickly by signaling a true alarm, at which, maintenance is performed to restore the process to its normal operating conditions. While responsive maintenance is performed if a shift is detected, proactive maintenance such as age-replacement is integrated with the design of sampling. A sampling plan is designed economically or economically-statistically. An economical design does not assess the system performance, whereas the economic-statistical design includes constraints on system performance such as the average outgoing quality and the effective production rate. The objective of this dissertation is to study sampling plans by attributes. Two studies are conducted in this dissertation. In the first study, a sampling model is developed for attribute inspection in a multistage system with multiple assignable causes that could propagate downstream. In the second study, an integrated model of sampling and maintenance with maintenance at the time of the false alarm is proposed. Most of the sampling plans are designed based on the occurrence of one assignable cause. Therefore, a sampling plan that allows two assignable causes to occur is developed in the first study. A multistage serial system of two unreliable machines with one assignable cause that could occur on each machine is assumed where the joint occurrence of assignable causes propagates the process\u27s shift to a higher value. As a result, the system state at any time is described by one in-control and three out-of-control states where the evolution from a state to another depends on the competencies between shifts. A stochastic methodology to model all competing scenarios is developed. This methodology forms a base that could be used if the number of machines and/or states increase. In the second study, an integrated model of sampling and scheduled maintenance is proposed. In addition to the two opportunities for maintenance at the true alarm and scheduled maintenance, an additional opportunity for preventive maintenance at the time of a false alarm is suggested. Since a false alarm could occur at any sampling time, preventive maintenance is assumed to increase with time. The effectiveness of the proposed model is compared to the effectiveness of separate models of scheduled maintenance and sampling. Inspired by the conducted studies, different topics of sampling and maintenance are proposed for future research. Two topics are suggested for integrating sampling with selective maintenance. The third topic is an extension of the first study where more than two shifts can occur simultaneously

    Condition Based Maintenance Optimization of Multi-Equipment Manufacturing Systems by Combining Discrete Event Simulation and Multiobjective Evolutionary Algorithms

    Get PDF
    Modern industrial engineers are continually faced with the challenge of meeting increasing demands for high quality products while using a reduced amount of resources. Since systems used in the production of goods and deliveries of services constitute the vast portion of capital in most industries, maintenance of such systems is crucial (Oyarbide-Zubillaga, Goti, & Sánchez 2008). Several studies compiled by Mjema (2002) show that maintenance costs represent from 3 to 40 % out of the total product cost (with an average value of a 28%). Within maintenance, the Condition-Based Maintenance (CBM) techniques are very important. Nevertheless, and comparing it to the Preventive Maintenance (PM) optimization problem, relatively few papers related to CBM have been developed: According to Aven (1996), one of the reasons to justify this fact is that CBM models are usually by its nature rather sophisticated compared to the more traditional replacement models. Within this maintenance strategy, Das & Sarkar (1999) distinguish two CBM subtypes, On-Condition Maintenance (OCM) and Condition Monitoring (CMT). OCM is based on periodic inspections, while CMT performs a continuous monitoring on the hardware through instrumentation. Considering the described context, this paper focuses on the problem of CMT optimisation in a manufacturing environment, with the objective of determining the optimal CMT deterioration levels beyond which PM activities should be applied under cost and profit criteria in a multi-equipment system. The initiative considers the interaction of production, work in process material, quality and maintenance aspects. In this work the suitability of discrete event simulation to model or modify complex system models is combined with the aptitude that multiobjective evolutionary algorithms have shown to deal with multiobjective problems to develop a maintenance management and optimisation approach. An application case where the activities applied on a system that produces hubcaps for the car maker industry is performed, showing the quantitative benefits of adopting the detailed approach

    Modelo de apoio à decisão para a manutenção condicionada de equipamentos produtivos

    Get PDF
    Doctoral Thesis for PhD degree in Industrial and Systems EngineeringIntroduction: This thesis describes a methodology to combine Bayesian control chart and CBM (Condition-Based Maintenance) for developing a new integrated model. In maintenance management, it is a challenging task for decision-maker to conduct an appropriate and accurate decision. Proper and well-performed CBM models are beneficial for maintenance decision making. The integration of Bayesian control chart and CBM is considered as an intelligent model and a suitable strategy for forecasting items failures as well as allow providing an effectiveness maintenance cost. CBM models provides lower inventory costs for spare parts, reduces unplanned outage, and minimize the risk of catastrophic failure, avoiding high penalties associated with losses of production or delays, increasing availability. However, CBM models need new aspects and the integration of new type of information in maintenance modeling that can improve the results. Objective: The thesis aims to develop a new methodology based on Bayesian control chart for predicting failures of item incorporating simultaneously two types of data: key quality control measurement and equipment condition parameters. In other words, the project research questions are directed to give the lower maintenance costs for real process control. Method: The mathematical approach carried out in this study for developing an optimal Condition Based Maintenance policy included the Weibull analysis for verifying the Markov property, Delay time concept used for deterioration modeling and PSO and Monte Carlo simulation. These models are used for finding the upper control limit and the interval monitoring that minimizes the (maintenance) cost function. Result: The main contribution of this thesis is that the proposed model performs better than previous models in which the hypothesis of using simultaneously data about condition equipment parameters and quality control measurements improve the effectiveness of integrated model Bayesian control chart for Condition Based Maintenance.Introdução: Esta tese descreve uma metodologia para combinar Bayesian control chart e CBM (Condition- Based Maintenance) para desenvolver um novo modelo integrado. Na gestão da manutenção, é importante que o decisor possa tomar decisões apropriadas e corretas. Modelos CBM bem concebidos serão muito benéficos nas tomadas de decisão sobre manutenção. A integração dos gráficos de controlo Bayesian e CBM é considerada um modelo inteligente e uma estratégica adequada para prever as falhas de componentes bem como produzir um controlo de custos de manutenção. Os modelos CBM conseguem definir custos de inventário mais baixos para as partes de substituição, reduzem interrupções não planeadas e minimizam o risco de falhas catastróficas, evitando elevadas penalizações associadas a perdas de produção ou atrasos, aumentando a disponibilidade. Contudo, os modelos CBM precisam de alterações e a integração de novos tipos de informação na modelação de manutenção que permitam melhorar os resultados.Objetivos: Esta tese pretende desenvolver uma nova metodologia baseada Bayesian control chart para prever as falhas de partes, incorporando dois tipos de dados: medições-chave de controlo de qualidade e parâmetros de condição do equipamento. Por outras palavras, as questões de investigação são direcionadas para diminuir custos de manutenção no processo de controlo.Métodos: Os modelos matemáticos implementados neste estudo para desenvolver uma política ótima de CBM incluíram a análise de Weibull para verificação da propriedade de Markov, conceito de atraso de tempo para a modelação da deterioração, PSO e simulação de Monte Carlo. Estes modelos são usados para encontrar o limite superior de controlo e o intervalo de monotorização para minimizar a função de custos de manutenção.Resultados: A principal contribuição desta tese é que o modelo proposto melhora os resultados dos modelos anteriores, baseando-se na hipótese de que, usando simultaneamente dados dos parâmetros dos equipamentos e medições de controlo de qualidade. Assim obtém-se uma melhoria a eficácia do modelo integrado de Bayesian control chart para a manutenção condicionada

    Switching- and hedging- point policy for preventive maintenance with degrading machines: application to a two-machine line

    Get PDF
    Maintenance and production are frequently managed as separate activities although they do interact. Disruptive events such as machine failures may find the company unready to repair the machine immediately leading to time waste. Preventive Maintenance may be carried out and maintenance time reduced to the effective task duration, in order to prevent time waste. Companies and researchers have been focusing on policies able to mitigate the impact of Preventive Maintenance on system availability, by exploiting the knowledge about degradation profiles in machines and the joint information from the machine state and the buffer level. In this work, the mathematical proof of the optimal threshold-based control policy for Preventive Maintenance with inventory cost, maintenance cost, backlog cost is provided. The control policy is defined in terms of buffer thresholds and dependency of the thresholds on the degradation condition. The optimal control policy is proved to include a combination of switching points and hedging points, where the first ones activate the Preventive Maintenance for a given condition and the latter ones control the production rate in order to minimize the surplus. An extensive experimental campaign analyzes the impact of system parameters such as the Maintenance duration on the cost function. The results show that there exists cases in which the optimal policy is dominated by the effect of the hedging points or the switching points, alternatively. Therefore, the proposed method is used to provide suggestions to the management for operative decisions, in order to choose the policy fitting best the system

    Joint production, quality control and maintenance policies subject to quality-dependant demand

    Get PDF
    This thesis is a strive to find a proper solution, using the stochastic optimal control means for an unreliable production system with product quality control and quality-dependent demand. The system consists of a single machine producing a single product type (M1P1) subject to breakdowns and random repairs and must satisfy a non-constant rate of customer demand, which response to the quality of parts received. Since the machine produces with a rate of noncompliant products, an inspection of the products is made to reduce the number of bad parts that would deliver to the customer. It is done continuously and consists of controlling a fraction of the production. Approved products are put back on the production line, while bad products are discarded. The intended objective of this study is to provide optimal quality control and production policy, which maximize the net revenue consisting of the gross revenue, the cost of inventory, the cost of shortage, the cost of the inspection, the cost of maintenance and the cost of no-quality parts. Main decision variables are the sampling rate of the quality control system as well as the threshold of finished product inventory. The demand function reacts to the average outgoing quality level (AOQ) of finished products. In the third chapter of this study, preventive maintenance and dynamic pricing policies are added up to the optimal policy, cited above. To achieve the optimal points of the policy, which maximize our net production revenue, a simulation approach is implemented as an experimental design and its results were used in response surface methodology. To implement the experiment design (simulation approach) which thoroughly reflects model considerations such as its continuous nature and the variety, first, a continuous variable for the probability of defectiveness was introduced, functioning with the age of machine up until its next breakdown maintenance. Second, so as to reflect the effect of quality control process that results in Average Outgoing Quality rather than simple defectiveness possibility, this function (AOQ) was built based on instant behavior of mentioned function above as its independent variable. Third, due to the use of prospect theory assumptions in building a demand function that responds to the level of client delivered defectiveness (AOQ), a responsive continuous function was created for the demand, reacting to the level of product quality by determining it's needed per time amount. Finally. To illustrate the machine’s manufacturing policy based on Hedging Point, finished product inventory variable was introduced in the experiment design. In a nutshell, we have a production system that has been designed in a way that by raising its age (At), leads to more possibility of defectiveness and less demand in time units. This manner continuous up until the next maintenance action of the system, which restores all factors to their initial conditions. By use of the simulation approach of optimization an experiment is designed and implemented to control decision variables of the policy and maximize the objective function of average net revenue (ANR). Decision variables are statistically and practically in the matter of consideration such as finished product inventory threshold (Z), the proportion of inspection (F) and PM thresholds (Mk or Pk)

    Reliability Modeling and Optimization Strategy for Manufacturing System Based on RQR Chain

    Get PDF
    Accurate and dynamic reliability modeling for the running manufacturing system is the prerequisite to implement preventive maintenance. However, existing studies could not output the reliability value in real time because their abandonment of the quality inspection data originated in the operation process of manufacturing system. Therefore, this paper presents an approach to model the manufacturing system reliability dynamically based on their operation data of process quality and output data of product reliability. Firstly, on the basis of importance explanation of the quality variations in manufacturing process as the linkage for the manufacturing system reliability and product inherent reliability, the RQR chain which could represent the relationships between them is put forward, and the product qualified probability is proposed to quantify the impacts of quality variation in manufacturing process on the reliability of manufacturing system further. Secondly, the impact of qualified probability on the product inherent reliability is expounded, and the modeling approach of manufacturing system reliability based on the qualified probability is presented. Thirdly, the preventive maintenance optimization strategy for manufacturing system driven by the loss of manufacturing quality variation is proposed. Finally, the validity of the proposed approach is verified by the reliability analysis and optimization example of engine cover manufacturing system

    Production and maintenance planning of deteriorating manufacturing systems taking into account the quality of products

    Get PDF
    The research work presented in this thesis addresses the integration of quality aspects in the development of stochastic dynamic programming models. The goal is to determine the joint optimal production planning, and several maintenance strategies for an unreliable and deteriorating manufacturing system. In particular, we conjecture that deterioration has a severe influence on various aspects of the machine, thus this leads to divide our research work in three (3) phases. In the first one, we analyze the simultaneous production planning and quality control problem for an unreliable manufacturing system. The machine is subject to deterioration whose effect is observed mainly on the quality throughput. The quality related decisions involves a major overhaul strategy that counters the effect of deterioration. A simulation optimization approach is applied to determine the optimal control policy, providing a better understanding about the influence of quality deterioration on such system. The second phase of the research analyzes the fact where the deterioration of the production system is originated by a combination of several factors. We consider that the system deteriorates by the combined effect of the wear of the machine and imperfect repairs. Multiple operational states are implemented to model variations on the rate of defectives. Furthermore at failure, either a repair or a major overhaul can be conducted; however the machine deteriorates even more following repairs. We use a Semi-arkov decision model, since the rate of defectives is depended of the machine’s history denoted by the number of repairs and the set of multiple operational states. Then the simultaneous production plan, and repair/overhaul switching strategy are determined through numerical methods. The third phase complements the previous models by considering that the deterioration of the production systems has a twofold effect that decreases the quality of the parts produced and also increases the failure intensity. We employ the age of the machine to denote the progressive deterioration. At failure it is conducted a minimal repair that leaves the machine at the same level of deterioration before failure. To counter completely the effect of deterioration it can be performed a major overhaul. Moreover, this phase introduces preventive maintenance strategies to reduce partially the level of deterioration. This set of characteristics yields to formulate a Semi-Markov model that thorough numerical methods, we determine the joint optimal production plan and the overhaul and preventive maintenance strategies. This model clarifies the role of quality aspects on the optimal control policy. In this way our research deepens the effects of quality aspects and deterioration on the optimal control policy, and provides interesting contributions to the domain of stochastic control of manufacturing systems. Additionally, a number of numerical examples are conducted as illustration, and extensive sensitivity analyses are presented with the purpose to confirm the structure and validity of the obtained control policies. The models developed in this thesis provide further insights into the relations between the production policy and quality aspects in the context of deterioration, and also contribute to a better understanding about the behavior of stochastic manufacturing systems
    corecore