110 research outputs found

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Extending Wireless Rechargeable Sensor Network Life without Full Knowledge

    Get PDF
    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes’ power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN.We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values

    Delay-Constrained Mobile Energy Charging in Wireless Sensor Networks

    Get PDF
    为了延长无线传感网的生存期,基于可充电的移动设备,研究设计了一种无线传感网中移动式能量补充的方法,移动节点可以在为传感器节点补充能量的同时收集数; 据.首先,通过将无线传感器网络监测区域分割为大小相同的子区域,该子区域内的节点组成一个簇;其次,以一个簇内的总能量为计算依据,设计移动节点的路径; 生成算法以确定能量高效的移动路线;最后,使用10种不同的随机网络拓扑图进行了仿真实验,以节点移动速度和时延为限制条件分别得到了对比数据.结果表明; ,本文提出的算法与NJNP( nearest-job-next with preemption)算法相比在时延相同的条件下( 800; s),生存期提升了6 000 s左右,在节点速度5 m/s条件下生存期提升了将近14 000; s.证明本文所提方法有效地提高了充电效率,延长了网络的生存期,可用于大规模的无线传感器网络.In order to prolong the lifetime of wireless sensor networks by using; energy-rechargeable mobile devices,this paper designs a mobile energy; replenishment method wherein a mobile element gathers data and recharges; sensors simultaneously. Firstly,the whole sensor network is divided into; several sub-regions equally and the sensors in each sub-region are; formed into a cluster. Secondly, considering the energy in a whole; cluster,the mobility path is designed to find the energy-efficient; mobile trace of the mobile element. Finally,in the simulation; experiment,we used ten different random network topologies to show the; comparisons with extensive simulation experiments under different; velocities and deadlines. The results indicate that the proposed; algorithm increases lifetime by approximately 6 000 s compared with; Nearest-Job-Next with Pre-emption( NJNP) under the deadline of 800 s.; Moreover,the proposed algorithm increases lifetime by approximately 14; 000 s compared with NJNP at velocity of 5 m/s. Thus,the proposed; algorithm can improve recharging efficiency and prolong the lifetime of; wireless sensor networks,which can be used in large-scale sensor; networks.国家自然科学基金资助项目; 福建省高等学校杰出青年科研人才培育计划资助项

    Improving sensor network performance with wireless energy transfer

    Get PDF
    Through recent technology advances in the field of wireless energy transmission Wireless Rechargeable Sensor Networks have emerged. In this new paradigm for wireless sensor networks a mobile entity called mobile charger (MC) traverses the network and replenishes the dissipated energy of sensors. In this work we first provide a formal definition of the charging dispatch decision problem and prove its computational hardness. We then investigate how to optimise the trade-offs of several critical aspects of the charging process such as: a) the trajectory of the charger; b) the different charging policies; c) the impact of the ratio of the energy the Mobile Charger may deliver to the sensors over the total available energy in the network. In the light of these optimisations, we then study the impact of the charging process to the network lifetime for three characteristic underlying routing protocols; a Greedy protocol, a clustering protocol and an energy balancing protocol. Finally, we propose a mobile charging protocol that locally adapts the circular trajectory of the MC to the energy dissipation rate of each sub-region of the network. We compare this protocol against several MC trajectories for all three routing families by a detailed experimental evaluation. The derived findings demonstrate significant performance gains, both with respect to the no charger case as well as the different charging alternatives; in particular, the performance improvements include the network lifetime, as well as connectivity, coverage and energy balance properties

    Load Balanced AOMDV-An Enhancement to AOMDV Protocol

    Get PDF
    MANETs are one of the most challenging and growing search fields because of their demand and challenges in delivering services. Load balancing is one of MANET's key problems since network load balancing is essential for better network life, QoS, and congestion control. The approach proposed in the research emphasizes on load stability and the distribution of traffic on the network on the basis of energy of the nodes. The simulations are performed in NS2. The results show that the proposed algorithm was able to reach the distribution and performance of the battery pack without increasing overhead in the network. But Average remaining energy is still more in case of AOMDV which further leads to trade-off. The algorithm proposed has also managed to consume a balanced energy of all nodes in the network

    Energy Efficient Algorithm for AOMDV with Load Balanced Feature

    Get PDF
    MANET is one of the most challenging and growing research fields due to their demand and challenges in the provision of services. Load balancing is one of the main problems of MANET since the load balancing of the network is essential for a better network life, QoS and congestion control. The approach proposed in the research emphasizes the stability of the load and the distribution of traffic in the network based on the energy of the nodes. The simulations are done in NS2. The results show that the proposed algorithm was able to reach the distribution and performance of the battery pack without increasing the overload in the network. But the average residual energy is even greater in the case of AOMDV, which leads to further compensation. The proposed algorithm has also managed to consume a balanced energy of all the nodes of the network

    Quality-Aware Scheduling Algorithms in Renewable Sensor

    No full text
    Wireless sensor network has emerged as a key technology for various applications such as environmental sensing, structural health monitoring, and area surveillance. Energy is by far one of the most critical design hurdles that hinders the deployment of wireless sensor networks. The lifetime of traditional battery-powered sensor networks is limited by the capacities of batteries. Even many energy conservation schemes were proposed to address this constraint, the network lifetime is still inherently restrained, as the consumed energy cannot be replenished easily. Fully addressing this issue requires energy to be replenished quite often in sensor networks (renewable sensor networks). One viable solution to energy shortages is enabling each sensor to harvest renewable energy from its surroundings such as solar energy, wind energy, and so on. In comparison with their conventional counterparts, the network lifetime in renewable sensor networks is no longer a main issue, since sensors can be recharged repeatedly. This results in a research focus shift from the network lifetime maximization in traditional sensor networks to the network performance optimization (e.g., monitoring quality). This thesis focuses on these issues and tackles important problems in renewable sensor networks as follows. We first study the target coverage optimization in renewable sensor networks via sensor duty cycle scheduling, where a renewable sensor network consisting of a set of heterogeneous sensors and a stationary base station need to be scheduled to monitor a set of targets in a monitoring area (e.g., some critical facilities) for a specified period, by transmitting their sensing data to the base station through multihop relays in a real-time manner. We formulate a coverage maximization problem in a renewable sensor network which is to schedule sensor activities such that the monitoring quality is maximized, subject to that the communication network induced by the activated sensors and the base station at each time moment is connected. We approach the problem for a given monitoring period by adopting a general strategy. That is, we divide the entire monitoring period into equal numbers of time slots and perform sensor activation or inactivation scheduling in the beginning of each time slot. As the problem is NP-hard, we devise efficient offline centralized and distributed algorithms for it, provided that the amount of harvested energy of each sensor for a given monitoring period can be predicted accurately. Otherwise, we propose an online adaptive framework to handle energy prediction fluctuation for this monitoring period. We conduct extensive experiments, and the experimental results show that the proposed solutions are very promising. We then investigate the data collection optimization in renewable sensor networks by exploiting sink mobility, where a mobile sink travels around the sensing field to collect data from sensors through one-hop transmission. With one-hop transmission, each sensor could send data directly to the mobile sink without any relay, and thus no energy are consumed on forwarding packets for others which is more energy efficient in comparison with multi-hop relays. Moreover, one-hop transmission particularly is very useful for a disconnected network, which may be due to the error-prone nature of wireless communication or the physical limit (e.g., some sensors are physically isolated), while multi-hop transmission is not applicable. In particular, we investigate two different kinds of mobile sinks, and formulate optimization problems under different scenarios, for which both centralized and distributed solutions are proposed accordingly. We study the performance of the proposed solutions and validate their effectiveness in improving the data quality. Since the energy harvested often varies over time, we also consider the scenario of renewable sensor networks by utilizing wireless energy transfer technology, where a mobile charging vehicle periodically travels inside the sensing field and charges sensors without any plugs or wires. Specifically, we propose a novel charging paradigm and formulate an optimization problem with an objective of maximizing the number of sensors charged per tour. We devise an offline approximation algorithm which runs in quasi-polynomial time and develop efficient online sensor charging algorithms, by considering the dynamic behaviors of sensors’ various sensing and transmission activities. To study the efficiency of the proposed algorithms, we conduct extensive experiments and the experimental results demonstrate that the proposed algorithms are very efficient. We finally conclude our work and discuss potential research topics which derive from the studies of this thesis

    Optimal power control in green wireless sensor networks with wireless energy harvesting, wake-up radio and transmission control

    Get PDF
    Wireless sensor networks (WSNs) are autonomous networks of spatially distributed sensor nodes which are capable of wirelessly communicating with each other in a multi-hop fashion. Among different metrics, network lifetime and utility and energy consumption in terms of carbon footprint are key parameters that determine the performance of such a network and entail a sophisticated design at different abstraction levels. In this paper, wireless energy harvesting (WEH), wake-up radio (WUR) scheme and error control coding (ECC) are investigated as enabling solutions to enhance the performance of WSNs while reducing its carbon footprint. Specifically, a utility-lifetime maximization problem incorporating WEH, WUR and ECC, is formulated and solved using distributed dual subgradient algorithm based on Lagrange multiplier method. It is discussed and verified through simulation results to show how the proposed solutions improve network utility, prolong the lifetime and pave the way for a greener WSN by reducing its carbon footprint
    corecore