149 research outputs found

    Perceptual techniques in audio quality assessment

    Get PDF

    Perceptually motivated blind source separation of convolutive audio mixtures

    Get PDF

    Single Channel auditory source separation with neural network

    Get PDF
    Although distinguishing different sounds in noisy environment is a relative easy task for human, source separation has long been extremely difficult in audio signal processing. The problem is challenging for three reasons: the large variety of sound type, the abundant mixing conditions and the unclear mechanism to distinguish sources, especially for similar sounds. In recent years, the neural network based methods achieved impressive successes in various problems, including the speech enhancement, where the task is to separate the clean speech out of the noise mixture. However, the current deep learning based source separator does not perform well on real recorded noisy speech, and more importantly, is not applicable in a more general source separation scenario such as overlapped speech. In this thesis, we firstly propose extensions for the current mask learning network, for the problem of speech enhancement, to fix the scale mismatch problem which is usually occurred in real recording audio. We solve this problem by combining two additional restoration layers in the existing mask learning network. We also proposed a residual learning architecture for the speech enhancement, further improving the network generalization under different recording conditions. We evaluate the proposed speech enhancement models on CHiME 3 data. Without retraining the acoustic model, the best bi-direction LSTM with residue connections yields 25.13% relative WER reduction on real data and 34.03% WER on simulated data. Then we propose a novel neural network based model called “deep clustering” for more general source separation tasks. We train a deep network to assign contrastive embedding vectors to each time-frequency region of the spectrogram in order to implicitly predict the segmentation labels of the target spectrogram from the input mixtures. This yields a deep network-based analogue to spectral clustering, in that the embeddings form a low-rank pairwise affinity matrix that approximates the ideal affinity matrix, while enabling much faster performance. At test time, the clustering step “decodes” the segmentation implicit in the embeddings by optimizing K-means with respect to the unknown assignments. Experiments on single channel mixtures from multiple speakers show that a speaker-independent model trained on two-speaker and three speakers mixtures can improve signal quality for mixtures of held-out speakers by an average over 10dB. We then propose an extension for deep clustering named “deep attractor” network that allows the system to perform efficient end-to-end training. In the proposed model, attractor points for each source are firstly created the acoustic signals which pull together the time-frequency bins corresponding to each source by finding the centroids of the sources in the embedding space, which are subsequently used to determine the similarity of each bin in the mixture to each source. The network is then trained to minimize the reconstruction error of each source by optimizing the embeddings. We showed that this frame work can achieve even better results. Lastly, we introduce two applications of the proposed models, in singing voice separation and the smart hearing aid device. For the former, a multi-task architecture is proposed, which combines the deep clustering and the classification based network. And a new state of the art separation result was achieved, where the signal to noise ratio was improved by 11.1dB on music and 7.9dB on singing voice. In the application of smart hearing aid device, we combine the neural decoding with the separation network. The system firstly decodes the user’s attention, which is further used to guide the separator for the targeting source. Both objective study and subjective study show the proposed system can accurately decode the attention and significantly improve the user experience

    Autoencoding sensory substitution

    Get PDF
    Tens of millions of people live blind, and their number is ever increasing. Visual-to-auditory sensory substitution (SS) encompasses a family of cheap, generic solutions to assist the visually impaired by conveying visual information through sound. The required SS training is lengthy: months of effort is necessary to reach a practical level of adaptation. There are two reasons for the tedious training process: the elongated substituting audio signal, and the disregard for the compressive characteristics of the human hearing system. To overcome these obstacles, we developed a novel class of SS methods, by training deep recurrent autoencoders for image-to-sound conversion. We successfully trained deep learning models on different datasets to execute visual-to-auditory stimulus conversion. By constraining the visual space, we demonstrated the viability of shortened substituting audio signals, while proposing mechanisms, such as the integration of computational hearing models, to optimally convey visual features in the substituting stimulus as perceptually discernible auditory components. We tested our approach in two separate cases. In the first experiment, the author went blindfolded for 5 days, while performing SS training on hand posture discrimination. The second experiment assessed the accuracy of reaching movements towards objects on a table. In both test cases, above-chance-level accuracy was attained after a few hours of training. Our novel SS architecture broadens the horizon of rehabilitation methods engineered for the visually impaired. Further improvements on the proposed model shall yield hastened rehabilitation of the blind and a wider adaptation of SS devices as a consequence

    Neuromorphic audio processing through real-time embedded spiking neural networks.

    Get PDF
    In this work novel speech recognition and audio processing systems based on a spiking artificial cochlea and neural networks are proposed and implemented. First, the biological behavior of the animal’s auditory system is analyzed and studied, along with the classical mechanisms of audio signal processing for sound classification, including Deep Learning techniques. Based on these studies, novel audio processing and automatic audio signal recognition systems are proposed, using a bio-inspired auditory sensor as input. A desktop software tool called NAVIS (Neuromorphic Auditory VIsualizer) for post-processing the information obtained from spiking cochleae was implemented, allowing to analyze these data for further research. Next, using a 4-chip SpiNNaker hardware platform and Spiking Neural Networks, a system is proposed for classifying different time-independent audio signals, making use of a Neuromorphic Auditory Sensor and frequency studies obtained with NAVIS. To prove the robustness and analyze the limitations of the system, the input audios were disturbed, simulating extreme noisy environments. Deep Learning mechanisms, particularly Convolutional Neural Networks, are trained and used to differentiate between healthy persons and pathological patients by detecting murmurs from heart recordings after integrating the spike information from the signals using a neuromorphic auditory sensor. Finally, a similar approach is used to train Spiking Convolutional Neural Networks for speech recognition tasks. A novel SCNN architecture for timedependent signals classification is proposed, using a buffered layer that adapts the information from a real-time input domain to a static domain. The system was deployed on a 48-chip SpiNNaker platform. Finally, the performance and efficiency of these systems were evaluated, obtaining conclusions and proposing improvements for future works.Premio Extraordinario de Doctorado U

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Äänisisällön automaattisen luokittelun menetelmiä

    Get PDF
    This study presents an overview of different methods of digital signal processing and pattern recognition that are frequently applicable to automatic recognition, classification and description of audio content. Moreover, strategies for the combination of the said methods are discussed. Some of the published practical applications from different areas are cited to illustrate the use of the basic methods and the combined recognition strategies. A brief overview of human auditory perception is also given, with emphasis on the aspects that are important for audio recognition.Tässä työssä esitetään yleiskatsaus sellaisiin signaalinkäsittelyn ja hahmontunnistuksen menetelmiin, jotka ovat usein sovellettavissa äänisisällön automaattiseen tunnistamiseen, luokitteluun ja kuvaamiseen. Lisäksi työssä esitetään strategioita mainittujen menetelmien yhdistelyyn ja annetaan näihin ratkaisuihin liittyviä esimerkinomaisia viitteitä kirjallisuudesta löytyviin käytännön sovelluksiin eri sovellusalueilta. Työ sisältää myös suppean esityksen ihmisen kuulon toiminnan pääpiirteistä äänitunnistuksen kannalta

    Temporal Feature Integration for Music Organisation

    Get PDF

    Digital neuromorphic auditory systems

    Get PDF
    This dissertation presents several digital neuromorphic auditory systems. Neuromorphic systems are capable of running in real-time at a smaller computing cost and consume lower power than on widely available general computers. These auditory systems are considered neuromorphic as they are modelled after computational models of the mammalian auditory pathway and are capable of running on digital hardware, or more specifically on a field-programmable gate array (FPGA). The models introduced are categorised into three parts: a cochlear model, an auditory pitch model, and a functional primary auditory cortical (A1) model. The cochlear model is the primary interface of an input sound signal and transmits the 2D time-frequency representation of the sound to the pitch models as well as to the A1 model. In the pitch model, pitch information is extracted from the sound signal in the form of a fundamental frequency. From the A1 model, timbre information in the form of time-frequency envelope information of the sound signal is extracted. Since the computational auditory models mentioned above are required to be implemented on FPGAs that possess fewer computational resources than general-purpose computers, the algorithms in the models are optimised so that they fit on a single FPGA. The optimisation includes using simplified hardware-implementable signal processing algorithms. Computational resource information of each model on FPGA is extracted to understand the minimum computational resources required to run each model. This information includes the quantity of logic modules, register quantity utilised, and power consumption. Similarity comparisons are also made between the output responses of the computational auditory models on software and hardware using pure tones, chirp signals, frequency-modulated signal, moving ripple signals, and musical signals as input. The limitation of the responses of the models to musical signals at multiple intensity levels is also presented along with the use of an automatic gain control algorithm to alleviate such limitations. With real-world musical signals as their inputs, the responses of the models are also tested using classifiers – the response of the auditory pitch model is used for the classification of monophonic musical notes, and the response of the A1 model is used for the classification of musical instruments with their respective monophonic signals. Classification accuracy results are shown for model output responses on both software and hardware. With the hardware implementable auditory pitch model, the classification score stands at 100% accuracy for musical notes from the 4th and 5th octaves containing 24 classes of notes. With the hardware implementation auditory timbre model, the classification score is 92% accuracy for 12 classes musical instruments. Also presented is the difference in memory requirements of the model output responses on both software and hardware – pitch and timbre responses used for the classification exercises use 24 and 2 times less memory space for hardware than software

    Classification and Separation Techniques based on Fundamental Frequency for Speech Enhancement

    Get PDF
    [ES] En esta tesis se desarrollan nuevos algoritmos de clasificación y mejora de voz basados en las propiedades de la frecuencia fundamental (F0) de la señal vocal. Estas propiedades permiten su discriminación respecto al resto de señales de la escena acústica, ya sea mediante la definición de características (para clasificación) o la definición de modelos de señal (para separación). Tres contribuciones se aportan en esta tesis: 1) un algoritmo de clasificación de entorno acústico basado en F0 para audífonos digitales, capaz de clasificar la señal en las clases voz y no-voz; 2) un algoritmo de detección de voz sonora basado en la aperiodicidad, capaz de funcionar en ruido no estacionario y con aplicación a mejora de voz; 3) un algoritmo de separación de voz y ruido basado en descomposición NMF, donde el ruido se modela de una forma genérica mediante restricciones matemáticas.[EN]This thesis is focused on the development of new classification and speech enhancement algorithms based, explicitly or implicitly, on the fundamental frequency (F0). The F0 of speech has a number of properties that enable speech discrimination from the remaining signals in the acoustic scene, either by defining F0-based signal features (for classification) or F0-based signal models (for separation). Three main contributions are included in this work: 1) an acoustic environment classification algorithm for hearing aids based on F0 to classify the input signal into speech and nonspeech classes; 2) a frame-by-frame basis voiced speech detection algorithm based on the aperiodicity measure, able to work under non-stationary noise and applicable to speech enhancement; 3) a speech denoising algorithm based on a regularized NMF decomposition, in which the background noise is described in a generic way with mathematical constraints.Tesis Univ. Jaén. Departamento de Ingeniería de Telecomunición. Leída el 11 de enero de 201
    corecore