10,498 research outputs found

    Tracking Identities and Attention in Smart Environments - Contributions and Progress in the CHIL Project

    Get PDF

    Human-centric light sensing and estimation from RGBD images: the invisible light switch

    Get PDF
    Lighting design in indoor environments is of primary importance for at least two reasons: 1) people should perceive an adequate light; 2) an effective lighting design means consistent energy saving. We present the Invisible Light Switch (ILS) to address both aspects. ILS dynamically adjusts the room illumination level to save energy while maintaining constant the light level perception of the users. So the energy saving is invisible to them. Our proposed ILS leverages a radiosity model to estimate the light level which is perceived by a person within an indoor environment, taking into account the person position and her/his viewing frustum (head pose). ILS may therefore dim those luminaires, which are not seen by the user, resulting in an effective energy saving, especially in large open offices (where light may otherwise be ON everywhere for a single person). To quantify the system performance, we have collected a new dataset where people wear luxmeter devices while working in office rooms. The luxmeters measure the amount of light (in Lux) reaching the people gaze, which we consider a proxy to their illumination level perception. Our initial results are promising: in a room with 8 LED luminaires, the energy consumption in a day may be reduced from 18585 to 6206 watts with ILS (currently needing 1560 watts for operations). While doing so, the drop in perceived lighting decreases by just 200 lux, a value considered negligible when the original illumination level is above 1200 lux, as is normally the case in offices

    Human-centric light sensing and estimation from RGBD images: The invisible light switch

    Get PDF
    Lighting design in indoor environments is of primary importance for at least two reasons: 1) people should perceive an adequate light; 2) an effective lighting design means consistent energy saving. We present the Invisible Light Switch (ILS) to address both aspects. ILS dynamically adjusts the room illumination level to save energy while maintaining constant the light level perception of the users. So the energy saving is invisible to them. Our proposed ILS leverages a radiosity model to estimate the light level which is perceived by a person within an indoor environment, taking into account the person position and her/his viewing frustum (head pose). ILS may therefore dim those luminaires, which are not seen by the user, resulting in an effective energy saving, especially in large open offices (where light may otherwise be ON everywhere for a single person). To quantify the system performance, we have collected a new dataset where people wear luxmeter devices while working in office rooms. The luxmeters measure the amount of light (in Lux) reaching the people gaze, which we consider a proxy to their illumination level perception. Our initial results are promising: in a room with 8 LED luminaires, the energy consumption in a day may be reduced from 18585 to 6206 watts with ILS (currently needing 1560 watts for operations). While doing so, the drop in perceived lighting decreases by just 200 lux, a value considered negligible when the original illumination level is above 1200 lux, as is normally the case in offices

    Joint Visual and Wireless Tracking System

    Get PDF
    Object tracking is an important component in many applications including surveillance, manufacturing, inventory tracking, etc. The most common approach is to combine a surveillance camera with an appearance-based visual tracking algorithm. While this approach can provide high tracking accuracy, the tracker can easily diverge in environments where there are much occlusions. In recent years, wireless tracking systems based on different frequency ranges are becoming more popular. While systems using ultra-wideband frequencies suffer similar problems as visual systems, there are systems that use frequencies as low as in those in the AM band to circumvent the problems of obstacles, and exploit the near-field properties between the electric and magnetic waves to achieve tracking accuracy down to about one meter. In this dissertation, I study the combination of a visual tracker and a low-frequency wireless tracker to improve visual tracking in highly occluded area. The proposed system utilizes two homographies formed between the world coordinates with the image coordinates of the head and the foot of the target person. Using the world coordinate system, the proposed system combines a visual tracker and a wireless tracker in an Extended Kalman Filter framework for joint tracking. Extensive experiments have been conducted using both simulations and real videos to demonstrate the validity of our proposed scheme

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Robust real-time tracking in smart camera networks

    Get PDF

    Multimodal Probabilistic Person Tracking and Identification in Smart Spaces

    Get PDF
    In this thesis, a new methodology is introduced for the multimodal tracking and identification of multiple persons by seeking and integrating reliable ID cues whenever they become observable. The method opportunistically integrates person-specific identification cues that can only sparsely be observed for each person over time and keeps track of the location of identified persons while ID cues are not available

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Tracking interacting targets in multi-modal sensors

    Get PDF
    PhDObject tracking is one of the fundamental tasks in various applications such as surveillance, sports, video conferencing and activity recognition. Factors such as occlusions, illumination changes and limited field of observance of the sensor make tracking a challenging task. To overcome these challenges the focus of this thesis is on using multiple modalities such as audio and video for multi-target, multi-modal tracking. Particularly, this thesis presents contributions to four related research topics, namely, pre-processing of input signals to reduce noise, multi-modal tracking, simultaneous detection and tracking, and interaction recognition. To improve the performance of detection algorithms, especially in the presence of noise, this thesis investigate filtering of the input data through spatio-temporal feature analysis as well as through frequency band analysis. The pre-processed data from multiple modalities is then fused within Particle filtering (PF). To further minimise the discrepancy between the real and the estimated positions, we propose a strategy that associates the hypotheses and the measurements with a real target, using a Weighted Probabilistic Data Association (WPDA). Since the filtering involved in the detection process reduces the available information and is inapplicable on low signal-to-noise ratio data, we investigate simultaneous detection and tracking approaches and propose a multi-target track-beforedetect Particle filtering (MT-TBD-PF). The proposed MT-TBD-PF algorithm bypasses the detection step and performs tracking in the raw signal. Finally, we apply the proposed multi-modal tracking to recognise interactions between targets in regions within, as well as outside the cameras’ fields of view. The efficiency of the proposed approaches are demonstrated on large uni-modal, multi-modal and multi-sensor scenarios from real world detections, tracking and event recognition datasets and through participation in evaluation campaigns
    • …
    corecore