188 research outputs found

    Performance of a method for the estimation of carrier and sampling frequency offsets in OFDM WLAN systems

    Get PDF
    A method was published in 2020 for the estimation of the residual carrier frequency offset (RCFO) and sampling frequency offset (SFO) in WLAN OFDM systems. The purpose of this paper is to compare this method with one existing method for more examples to make a fair comparison in terms of estimation accuracy and computational load

    Performance Evaluation of a Hybrid Fractional Carrier Frequency Offset Estimator in OFDM

    Get PDF
    The major drawback of the orthogonal frequency division multiplexing (OFDM) system is high sensitivity to synchronization errors caused by carrier frequency offsets (CFOs), which result in degradation in the bit error rate (BER) performance. This paper investigates the performance of a hybrid fractional carrier frequency offset estimator (FCFOE) for frequency synchronization in the OFDM system. The hybrid FCFOE exploits the pilots inserted within the OFDM symbol for channel estimation together with the information inherent in the cyclic prefix (CP), with a view to improving the estimation of the CP-based FCFOE. The performance of the developed hybrid FCFOE was evaluated in terms of the mean squared error (MSE) and bit error rate (BER) using OFDM-QPSK and OFDM-16QAM schemes it turn. The simulation results show that the hybrid FCFOE only gives slightly better performance over the CP-based FCFOE; but the performance enhancement of the hybrid FCFOE is noticeable in OFDM-16QAM. Keywords: Carrier frequency offset estimation, Hybrid, Orthogonal frequency division multiplexing, Synchronization, Maximum likelihood, Cross-correlation

    A new data rotation syncrhonization scheme for CP based OFDM systems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Improved Time and Frequency Synchronization Algorithm for 802.11a Wireless Standard based on the SIGNAL Field

    Get PDF
    International audienceTime and frequency synchronization in the IEEE 802.11a OFDM (Orthogonal Frequency Division Multiplexing) wireless communication system is addressed in this paper. Usually synchronization algorithms rely only on training sequences specified by the standard. To enhance the synchronization between stations, we propose to extract known information by both the transmitter and the receiver at the IEEE 802.11a physical layer to be then exploited by the receiver in addition to the training sequences. Indeed the parts of the identified SIGNAL field are either known or predictable from the RtS (Request to Send) control frame when the CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) mechanism is triggered jointly to bit-rate adaptation algorithms to the channel. Moreover the received RtS control frame allows the receiver to estimate the channel before time synchronization stage improving then the performance of the proposed synchronization algorithm. Simulation results show that the performance of the proposed synchronization algorithm is improved as compared to existing algorithms

    Synchronization Technique for OFDM-Based UWB System

    Get PDF

    Frequency Offset Compensation for OFDM Systems Using a Combined Autocorrelation and Wiener Filtering Scheme, Journal of Telecommunications and Information Technology, 2010, nr 1

    Get PDF
    One of the orthogonal frequency division multiplexing (OFDM) system disadvantages is its sensitivity to frequency offset and phase noise, which lead to losing the orthogonality between the subcarriers and thereby degrade the system performance. In this paper a joint scheme for frequency offset and pilot-based channel estimation is introduced in which the frequency offset is first estimated using an autocorrelation method, and then is fined further by applying an iterative phase correction by means of pilot-based Wiener filtering method. In order to verify the capability of the estimation algorithm, the scheme has been implemented and tested using a real measurement system in a multipath indoor environment. The results show the algorithm capability of compensating for the frequency offset with different transmission and channel conditions

    Feedback Mechanisms for Centralized and Distributed Mobile Systems

    Get PDF
    The wireless communication market is expected to witness considerable growth in the immediate future due to increasing smart device usage to access real-time data. Mobile devices become the predominant method of Internet access via cellular networks (4G/5G) and the onset of virtual reality (VR), ushering in the wide deployment of multiple bands, ranging from TVWhite Spaces to cellular/WiFi bands and on to mmWave. Multi-antenna techniques have been considered to be promising approaches in telecommunication to optimize the utilization of radio spectrum and minimize the cost of system construction. The performance of multiple antenna technology depends on the utilization of radio propagation properties and feedback of such information in a timely manner. However, when a signal is transmitted, it is usually dispersed over time coming over different paths of different lengths due to reflections from obstacles or affected by Doppler shift in mobile environments. This motivates the design of novel feedback mechanisms that improve the performance of multi-antenna systems. Accurate channel state information (CSI) is essential to increasing throughput in multiinput, multi-output (MIMO) systems with digital beamforming. Channel-state information for the operation of MIMO schemes (such as transmit diversity or spatial multiplexing) can be acquired by feedback of CSI reports in the downlink direction, or inferred from uplink measurements assuming perfect channel reciprocity (CR). However, most works make the assumption that channels are perfectly reciprocal. This assumption is often incorrect in practice due to poor channel estimation and imperfect channel feedback. Instead, experiments have demonstrated that channel reciprocity can be easily broken by multiple factors. Specifically, channel reciprocity error (CRE) introduced by transmitter-receiver imbalance have been widely studied by both simulations and experiments, and the impact of mobility and estimation error have been fully investigated in this thesis. In particular, unmanned aerial vehicles (UAVs) have asymmetric behavior when communicating with one another and to the ground, due to differences in altitude that frequently occur. Feedback mechanisms are also affected by channel differences caused by the user’s body. While there has been work to specifically quantify the losses in signal reception, there has been little work on how these channel differences affect feedback mechanisms. In this dissertation, we perform system-level simulations, implement design with a software defined radio platform, conduct in-field experiments for various wireless communication systems to analyze different channel feedback mechanisms. To explore the feedback mechanism, we then explore two specific real world scenarios, including UAV-based beamforming communications, and user-induced feedback systems

    MIMO-OFDM communication systems: channel estimation and wireless location

    Get PDF
    In this new information age, high data rate and strong reliability features our wireless communication systems and is becoming the dominant factor for a successful deployment of commercial networks. MIMO-OFDM (multiple input multiple output-orthogonal frequency division multiplexing), a new wireless broadband technology, has gained great popularity for its capability of high rate transmission and its robustness against multi-path fading and other channel impairments. A major challenge to MIMO-OFDM systems is how to obtain the channel state information accurately and promptly for coherent detection of information symbols and channel synchronization. In the first part, this dissertation formulates the channel estimation problem for MIMO-OFDM systems and proposes a pilot-tone based estimation algorithm. A complex equivalent base-band MIMO-OFDM signal model is presented by matrix representation. By choosing equally-spaced and equally-powered pilot tones from sub-carriers in one OFDM symbol, a down-sampled version of the original signal model is obtained. Furthermore, this signal model is transformed into a linear form solvable for the LS (least-square) estimation algorithm. Based on the resultant model, a simple pilot-tone design is proposed in the form of a unitary matrix, whose rows stand for different pilot-tone sets in the frequency domain and whose columns represent distinct transmit antennas in the spatial domain. From the analysis and synthesis of the pilot-tone design in this dissertation, our estimation algorithm can reduce the computational complexity inherited in MIMO systems by the fact that the pilot-tone matrix is essentially a unitary matrix, and is proven an optimal channel estimator in the sense of achieving the minimum MSE (mean squared error) of channel estimation for a fixed power of pilot tones. In the second part, this dissertation addresses the wireless location problem in WiMax (worldwide interoperability for microwave access) networks, which is mainly based on the MIMO-OFDM technology. From the measurement data of TDOA (time difference of arrival), AOA (angle of arrival) or a combination of those two, a quasi-linear form is formulated for an LS-type solution. It is assumed that the observation data is corrupted by a zero-mean AWGN (additive white Gaussian noise) with a very small variance. Under this assumption, the noise term in the quasi-liner form is proved to hold a normal distribution approximately. Hence the ML (maximum-likelihood) estimation and the LS-type solution are equivalent. But the ML estimation technique is not feasible here due to its computational complexity and the possible nonexistence of the optimal solution. Our proposed method is capable of estimating the MS location very accurately with a much less amount of computations. A final result of the MS (mobile station) location estimation, however, cannot be obtained directly from the LS-type solution without bringing in another independent constraint. To solve this problem, the Lagrange multiplier is explored to find the optimal solution to the constrained LS-type optimization problem
    corecore