4,736 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    An empirical investigation of the relationship between integration, dynamic capabilities and performance in supply chains

    Get PDF
    This research aimed to develop an empirical understanding of the relationships between integration, dynamic capabilities and performance in the supply chain domain, based on which, two conceptual frameworks were constructed to advance the field. The core motivation for the research was that, at the stage of writing the thesis, the combined relationship between the three concepts had not yet been examined, although their interrelationships have been studied individually. To achieve this aim, deductive and inductive reasoning logics were utilised to guide the qualitative study, which was undertaken via multiple case studies to investigate lines of enquiry that would address the research questions formulated. This is consistent with the author’s philosophical adoption of the ontology of relativism and the epistemology of constructionism, which was considered appropriate to address the research questions. Empirical data and evidence were collected, and various triangulation techniques were employed to ensure their credibility. Some key features of grounded theory coding techniques were drawn upon for data coding and analysis, generating two levels of findings. These revealed that whilst integration and dynamic capabilities were crucial in improving performance, the performance also informed the former. This reflects a cyclical and iterative approach rather than one purely based on linearity. Adopting a holistic approach towards the relationship was key in producing complementary strategies that can deliver sustainable supply chain performance. The research makes theoretical, methodological and practical contributions to the field of supply chain management. The theoretical contribution includes the development of two emerging conceptual frameworks at the micro and macro levels. The former provides greater specificity, as it allows meta-analytic evaluation of the three concepts and their dimensions, providing a detailed insight into their correlations. The latter gives a holistic view of their relationships and how they are connected, reflecting a middle-range theory that bridges theory and practice. The methodological contribution lies in presenting models that address gaps associated with the inconsistent use of terminologies in philosophical assumptions, and lack of rigor in deploying case study research methods. In terms of its practical contribution, this research offers insights that practitioners could adopt to enhance their performance. They can do so without necessarily having to forgo certain desired outcomes using targeted integrative strategies and drawing on their dynamic capabilities

    Resilience and food security in a food systems context

    Get PDF
    This open access book compiles a series of chapters written by internationally recognized experts known for their in-depth but critical views on questions of resilience and food security. The book assesses rigorously and critically the contribution of the concept of resilience in advancing our understanding and ability to design and implement development interventions in relation to food security and humanitarian crises. For this, the book departs from the narrow beaten tracks of agriculture and trade, which have influenced the mainstream debate on food security for nearly 60 years, and adopts instead a wider, more holistic perspective, framed around food systems. The foundation for this new approach is the recognition that in the current post-globalization era, the food and nutritional security of the world’s population no longer depends just on the performance of agriculture and policies on trade, but rather on the capacity of the entire (food) system to produce, process, transport and distribute safe, affordable and nutritious food for all, in ways that remain environmentally sustainable. In that context, adopting a food system perspective provides a more appropriate frame as it incites to broaden the conventional thinking and to acknowledge the systemic nature of the different processes and actors involved. This book is written for a large audience, from academics to policymakers, students to practitioners

    Graph-based Algorithm Unfolding for Energy-aware Power Allocation in Wireless Networks

    Full text link
    We develop a novel graph-based trainable framework to maximize the weighted sum energy efficiency (WSEE) for power allocation in wireless communication networks. To address the non-convex nature of the problem, the proposed method consists of modular structures inspired by a classical iterative suboptimal approach and enhanced with learnable components. More precisely, we propose a deep unfolding of the successive concave approximation (SCA) method. In our unfolded SCA (USCA) framework, the originally preset parameters are now learnable via graph convolutional neural networks (GCNs) that directly exploit multi-user channel state information as the underlying graph adjacency matrix. We show the permutation equivariance of the proposed architecture, which is a desirable property for models applied to wireless network data. The USCA framework is trained through a stochastic gradient descent approach using a progressive training strategy. The unsupervised loss is carefully devised to feature the monotonic property of the objective under maximum power constraints. Comprehensive numerical results demonstrate its generalizability across different network topologies of varying size, density, and channel distribution. Thorough comparisons illustrate the improved performance and robustness of USCA over state-of-the-art benchmarks.Comment: Published in IEEE Transactions on Wireless Communication

    Religion, Education, and the ‘East’. Addressing Orientalism and Interculturality in Religious Education Through Japanese and East Asian Religions

    Get PDF
    This work addresses the theme of Japanese religions in order to rethink theories and practices pertaining to the field of Religious Education. Through an interdisciplinary framework that combines the study of religions, didactics and intercultural education, this book puts the case study of Religious Education in England in front of two ‘challenges’ in order to reveal hidden spots, tackle unquestioned assumptions and highlight problematic areas. These ‘challenges’, while focusing primarily on Japanese religions, are addressed within the wider contexts of other East Asian traditions and of the modern historical exchanges with the Euro-American societies. As result, a model for teaching Japanese and other East Asian religions is discussed and proposed in order to fruitfully engage issues such as orientalism, occidentalism, interculturality and critical thinking

    Electrical and Optical Modeling of Thin-Film Photovoltaic Modules

    Get PDF
    Heutzutage ist durch viele wissenschaftliche Studien nachgewiesen, dass die Erde längst dem Klimawandel unterworfen ist. Daher muss die gesamte Menschheit vereint handeln, um die schlimmsten Katastrophenszenarien zu verhindern. Ein vielversprechender Ansatz - wenn nicht sogar der vielversprechendste überhaupt - um diese angesprochene, größte Herausforderung in der Geschichte der Menschheit zu bewältigen, ist es, den Energiehunger der Menschheit durch die Erzeugung erneuerbarer und unerschöpflicher Energie zu sättigen. Die Photovoltaik (PV)-Technologie ist ein vielversprechender Anwärter, die leistungsstärkste erneuerbare Energiequelle zu stellen, und spielt aufgrund ihrer direkten Umwandlung des Sonnenlichtes und ihrer skalierbaren Anwendbarkeit in Form von großflächigen Solarmodulen bereits jetzt eine große Rolle bei der Erzeugung erneuerbarer Energie. Im PV-Sektor sind Solarmodule aus Siliziumwafern die derzeit vorherrschende Technologie. Neu aufkommende PV-Technologien wie die Dünnschichttechnologie haben jedoch vorteilhafte Eigenschaften wie einen sehr geringen Kohlenstoffdioxid (CO2)-Fußabdruck, eine kurze energetische Amortisierungszeit und das Potenzial für eine kostengünstige monolithische Massenproduktion, obwohl diese derzeit noch nicht final ausgereift ist. Um die Dünnschichttechnologie jedoch gezielt in Richtung einer breiten Marktreife zu entwickeln, sind numerische Simulationen eine wichtige Säule für das wissenschaftliche Verständnis und die technologische Optimierung. Während sich traditionelle Simulationsliteratur häufig mit materialspezifischen Herausforderungen befasst, konzentriert sich diese Arbeit auf industrieorientierte Herausforderungen auf Modulebene, ohne die zugrundeliegenden Materialparameter zu verändern. Um ein allumfassendes, digitales Modell eines Solarmoduls zu erstellen, werden in dieser Arbeit mehrere Simulationsansätze aus verschiedenen physikalischen Bereichen kombiniert. Zur Abbildung elektrischer Effekte, einschließlich der räumlichen Spannungsvariation innerhalb des Moduls, wird eine Finite Elemente Methode (FEM) zur Lösung der räumlich quantisierten Poisson-Gleichung verwendet. Um optische Effekte zu berücksichtigen, wird eine generalisierte Transfermatrix-Methode (TMM) verwendet. Alle Simulationsmethoden sind in dieser Arbeit von Grund auf neu programmiert worden, um eine Verknüpfung aller Simulationsebenen mit dem höchstmöglichen Grad an Anpassung und Verknüpfung zu ermöglichen. Die Simulation und die Korrektheit der Parameter wird durch externe Quanteneffizienz (EQE)-Messungen, experimentelle Reflexionsdaten und gemessene Strom-Spannungs (I-U)-Kennlinien verifiziert. Der Kernpunkt der Vorgehensweise dieser Arbeit ist eine ganzheitliche Simulationsmethodik auf Modulebene. Dies ermöglicht es, die Lücke zwischen der Simulation auf Materialebene über die Berechnung von Laborwirkungsgraden bis hin zur Bestimmung der von zahlreichen Umweltfaktoren beeinflusste Leistung der Module im Freifeld zu überbrücken. Durch diese Verknüpfung von Zellsimulation und Systemdesign ist es lediglich aus Laboreigenschaften möglich, das Freifeldverhalten von Solarmodulen zu prognostizieren. Sogar das Zurückrechnen von experimentellen Messungen zu Materialparameter ist mittels des in dieser Arbeit entwickelten Verfahrens des Reverse Engineering Fittings (REF) möglich. Das in dieser Arbeit entwickelte numerische Verfahren kann für mehrere Anwendungen genutzt werden. Zunächst können durch die Kombination von elektrischen und optischen Simulationen ganzheitliche Top-Down-Verlustanalysen durchgeführt werden. Dies ermöglicht eine wissenschaftliche Einordnung und einen quantitativen Vergleich aller Verlustleistungsmechanismen auf einen Blick, was die zukünftige Forschung und Entwicklung in Richtung von technologischen Schwachstellen von Solarmodulen lenkt. Darüber hinaus ermöglicht die Kombination von Elektrik und Optik die Detektion von Verlusten, die auf dem nichtlinearen Zusammenspiel dieser beiden Ebenen beruhen und auf eine räumliche Spannungsverteilung im Solarmodul zurückzuführen sind. Diese Arbeit verwendet die entwickelten numerischen Modelle ebenfalls für Optimierungsprobleme, die an digitalen Modellen realer Solarmodule durchgeführt werden. Häufig auftretende Fragestellungen bei der Entwicklung von Solarmodulen sind beispielsweise die Schichtdicke des vorderen optisch transparenten, elektrisch leitfähigen Oxids (TCO) oder die Breite von monolithisch verschalteten Zellen. Die Bestimmung des Optimums dieser mehrdimensionalen Abwägungen zwischen optischer Transparenz, elektrischer Leitfähigkeit und geometrisch inaktiver Fläche zwischen den einzelnen Zellen ist ein Hauptmerkmal der Methodik dieser Arbeit. Mittels des FEM-Ansatzes dieser Arbeit ist es möglich, alle gegenseitigen Wechselwirkungen über verschiedene physikalische Ebenen hinweg zu berücksichtigen und ein ganzheitlich optimiertes Moduldesign zu finden. Auch topologisch komplexere Probleme, wie das Finden eines geeigneten Designs für das Metallisierungsgitter, können auf Grundlage der Simulation mittels der Methode der Topologie-Optimierung (TO) gelöst werden. In dieser Arbeit wurde das TO-Verfahren zum ersten Mal für monolithisch integrierte Zellen eingesetzt. Darüber hinaus wurde gezeigt, dass sowohl einfache Optimierungen der TCO-Schichtdicken als auch Topologie-Optimierungen stark von den vorherrschenden Beleuchtungsverhältnissen abhängen. Daher ist eine Optimierung auf den Jahresertrag anstelle des Laborwirkungsgrades für industrienahe Anwendungen wesentlich sinnvoller, da die mittleren Jahreseinstrahlungen deutlich von den Laborbedingungen abweichen. Mit Hilfe dieser Ertragsoptimierung wurde in dieser Arbeit für die Kupfer-Indium-Gallium-Diselenid CuIn1x_{1-x}Gax_xSe2_2 (CIGS)-Technologie ein Leistungsgewinn von über 1 % im Ertrag für einige geografische Standorte und gleichzeitig eine Materialeinsparung für die Metallisierungs- und TCO-Schicht von bis zu 50 % errechnet. Mit Hilfe der numerischen Simulationen dieser Arbeit können alle denkbaren technologischen Verbesserungen auf Modulebene in das Modell eingebracht werden. Auf diese Weise wurde das aktuelle technologische Limit für CIGS-Dünnschicht-Solarmodule berechnet. Unter Verwendung der Randbedingungen der derzeit verfügbaren Materialien, Technologie- und Fertigungstoleranzen und des derzeit besten in der Literatur veröffentlichten CIGS-Materials ergibt sich ein theoretisches Wirkungsgradmaximum von 24 % auf Modulebene. Das derzeit beste veröffentlichte Modul mit den gegebenen Restriktionen weist einen Wirkungsgrad von 19,2 % auf [1]. Verbessert sich der CIGS-Absorber vergleichbar mit jenem von Galliumarsenid (GaAs) im Hinblick auf dessen Rekombinationsrate, ergibt sich ein erhöhtes Wirkungsgradlimit von etwa 28 %. Im Falle eines idealen CIGS-Absorbers ohne intrinsische Rekombinationsverluste wird in dieser Arbeit eine maximale Effizienzobergrenze von 29 % berechnet

    Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges

    Full text link
    The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation mobile networks. In less than ten years, in-band FD has advanced from being demonstrated in research labs to being implemented in standards and products, presenting new opportunities to utilize its foundational concepts. Some of the most significant opportunities include using FD to enable wireless networks to sense the physical environment, integrate sensing and communication applications, develop integrated access and backhaul solutions, and work with smart signal propagation environments powered by reconfigurable intelligent surfaces. However, these new opportunities also come with new challenges for large-scale commercial deployment of FD technology, such as managing self-interference, combating cross-link interference in multi-cell networks, and coexistence of dynamic time division duplex, subband FD and FD networks.Comment: 21 pages, 15 figures, accepted to an IEEE Journa

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    corecore