31 research outputs found

    A distributed power-saving framework for LTE Het-Nets exploiting Almost Blank Subframes

    Get PDF
    Almost Blank Subframes (ABS) have been defined in LTE as a means to coordinate transmissions in heterogeneous networks (HetNets), composed of macro and micro eNodeBs: the macro issues ABS periods, and refrains from transmitting during ABSs, thus creating interference-free subframes for the micros. Micros report their capacity demands to the macro via the X2 interface, and the latter provisions the ABS period accordingly. Existing algorithms for ABS provisioning usually share resources proportionally among HetNet nodes in a long-term perspective (e.g., based on traffic forecast). We argue instead that this mechanism can be exploited to save power in the HetNet: in fact, during ABSs, the macro consumes less power, since it only transmits pilot signals. Dually, the micros may inhibit data transmission themselves in some subframes, and optimally decide when to do this based on knowledge of the ABS period. This allows us to define a power saving framework that works in the short term, modifying the ABS pattern at the fastest possible pace, serving the HetNet traffic at reduced power cost. Our framework is designed using only standard signaling. Simulations show that the algorithm consumes less power than its competitors, especially at low loads, and improves the UE QoS

    A distributed power-saving framework for LTE HetNets exploiting Almost Blank Subframes

    Get PDF
    Almost Blank Subframes (ABSs) have been defined in LTE as a means to coordinate transmissions in heterogeneous networks (HetNets), composed of macro and micro eNodeBs: the macro issues ABS periods, and refrains from transmitting during ABSs, thus creating interference-free subframes for the micros. Micros report their capacity demands to the macro via the X2 interface, and the latter provisions the ABS period accordingly. Existing algorithms for ABS provisioning usually share resources proportionally among HetNet nodes in a long-term perspective (e.g., based on traffic forecast). We argue instead that this mechanism can be exploited to save power in the HetNet: in fact, dur-ing ABSs, the macro consumes less power, since it only transmits pilot signals. Dually, the micros may inhibit data transmission themselves in some subframes, and optimally decide when to do this based on knowledge of the ABS period. This allows us to define a power saving framework that works in the short term, mod-ifying the ABS pattern at the fastest possible pace, serving the HetNet traffic at reduced power cost. Our framework is designed using only standard signaling. Simulations show that the algorithm consumes less power than its competitors, especially at low loads, and improves the UE QoS

    Adaptive Cellular Layout in Self-Organizing Networks using Active Antenna Systems

    Get PDF
    The rapidly growing demand of capacity by wireless services is challenging the mobile industry with a need of new deployment strategies. Besides, the nature of the spatial and temporal distribution of user traffic has become heterogeneous and fluctuating intermittently. Those challenges are currently tackled by network densification and tighter spatial reuse of radio resources by introducing a heterogeneous deployment of small cells embedded in a macro cell layout. Since user traffic is varying both spatially and temporally, a so called busy hour planning is typically applied where enough small cells are deployed at the corresponding locations to meet the expected capacity demand. This deployment strategy, however, is inefficient as it may leave plenty of network resources under-utilized during non-busy hour, i.e., most of the operation time. Such over-provisioning strategy incurs high capital investment on infrastructure (CAPEX) as well as operating cost (OPEX) for operators. Therefore, optimal would be a network with flexible capacity accommodation by following the dynamics of the traffic situation and evading the inefficiencies and the high cost of the fixed deployment approach. The advent of a revolutionizing base station antenna technology called Active Antenna Systems (AAS) is promising to deliver the required flexibility and dynamic deployment solution desired for adaptive capacity provisioning. Having the active radio frequency (RF) components integrated with the radiating elements, AAS supports advanced beamforming features. With AAS-equipped base station, multiple cell-specific beams can be simultaneously created to densify the cell layout by means of an enhanced form of sectorization. The radiation pattern of each cell-beam can be dynamically adjusted so that a conventional cell, for instance, can be split into two distinct cells, if a high traffic concentration is detected. The traffic in such an area is shared among the new cells and by spatially reusing the frequency spectrum, the cell-splitting (sectorization) doubles the total available radio resources at the cost of an increased co-channel interference between the cells. Despite the AAS capability, the realization of flexible sectorization for dynamic cell layout adaptation poses several challenges. One of the challenges is that the expected performance gain from cell densification can be offset by the ensuing co-channel interference in the system. It is also obvious that a self-organized autonomous management and configuration is needed, if cell deployment must follow the variation of the user traffic over time and space by means of a sectorization procedure. The automated mechanism is desired to enhance the system performance and optimize the user experience by automatically controlling the sectorization process. With such a dynamic adaptation scheme, the self-organizing network (SON) facilities are getting a new dimension in terms of controlling the flexible cell layout changes as the environment including the radio propagation characteristics cannot be assumed stationary any longer. To fully exploit the flexible sectorization feature in three-dimensional space, reliable and realistic propagation models are required which are able to incorporate the dependency of the radio channel characteristics in the elevation domain. Analysis of the complex relationship among various system parameters entails a comprehensive model that properly describes the AAS-sectorization for conducting detailed investigation and carrying out precise evaluation of the ensuing system performance. A novel SON algorithm that automates the AAS-sectorization procedure is developed. The algorithm controls the activation/deactivation of cell-beams enabling the sectorization based cell layout adjustment adaptively. In order to effectively meet the dynamically varying network capacity demand that varies according to the spatial user distribution, the developed SON algorithm monitors the load of the cell, the spatial traffic concentrations and adapts the underlying cell coverage layout by autonomously executing the sectorization either in the horizontal or vertical plane. The SON algorithm specifies various procedures which rely on real time network information collected using actual signal measurement reports from users. The particular capability of the algorithm is evading unforeseen system performance degradation by properly executing the sectorization not only where in the network and when it is needed, but also only if the ensuing co-channel interference does not have adverse impact on the user experience. To guarantee the optimality of the network performance after sectorization, a performance metric that takes both the expectable gain from radio resource and impact of the co-channel interference into account is developed. In order to combat the severity of the inter-cell interference problem that arises with AAS-sectorization between the co-channel operated cells, an interference mitigation scheme is developed in this thesis. The proposed scheme coordinates the data transmission between the co-sited cells by the transmission muting principle. To ensure that the transmission muting is not degrading the overall system performance by blanking more data transmission, a new SON algorithm that controls the optimal usage the proposed scheme is developed. To appropriately characterize the spatial separation of the cell beams being activated with sectorization, a novel propagation shadowing model that incorporates elevation tilt parameter is developed. The new model addresses the deficiencies of the existing tilt-independent shadowing model which inherently assumes a stationary propagation characteristics in the elevation domain. The tilt-dependent shadowing model is able to statistically characterize the elevation channel variability with respect to the tilt configuration settings. Simplified 3D beamforming models and beam pattern synthesis approaches required for fast cell layout adaptation and dynamic configuration of the AAS parameters are developed for the realization of various forms of AAS-based sectorization. Horizontal and vertical sectorization are the two forms of AAS-based sectorization considered in this thesis where two beams are simultaneously created from a single AAS to split the underlying coverage layout in horizontal or vertical domain, respectively. The performance of the developed theoretical AAS-sectorization concepts and models are examined by means of system level simulations considering the Long Term Evolution-Advanced (LTE-A) macro-site deployment within exemplifying scenarios. Simulation results have demonstrated that the SON mechanism is able to follow the different conditions when and where the sectorization delivers superior performance or adversely affects the user experience. Impacts on the performance of existing SON operations, like Mobility Robustness Optimization (MRO), which are relying on stationary cell layout conditions have been studied. Further investigations are carried out in combination with the cell layout changes triggered by the dynamic AAS-based sectorization. The observed results have confirmed that proper coordination is needed between the SON scheme developed for AAS sectorization and the MRO operation to evade unforeseen performance degradation and to ensure a seamless user experience. The technical concepts developed in this thesis further have impacted the 3rd3^\textrm{rd} Generation Partnership Project (3GPP) SON for AAS Work Item (WI) discussed in the Radio Access Network (RAN)-3 Work Group (WG). In particular, the observed study results dealing with the interworking of the existing SON features and AAS sectorization have been noted in the standardization work

    Coordinated Multipoint Communications In Heterogeneous Networks

    Get PDF
    As users' demands on cellular service escalate rapidly, operators are required to deploy technologies with wider and more sophisticated techniques. In order to meet the future service needs, the standardization body 3rd Generation Partnership Project (3GPP) has standardized Long Term Evolution (LTE) and it has been working on enhancement of LTE and LTE-Advanced. The two key enabling technologies of LTE-Advanced are Heterogeneous Networks (HetNets) and Coordinated Multipoint (CoMP) communications. The former is aimed to improve inconsistent user experience and its basic feature is standardized in 3GPP release 11. The latter one where small cells are deployed within macro-cellular networks has been considered to enhance coverage and capacity. This thesis presents a concise literature survey of cooperative communications and CoMP technologies. Furthermore, a detailed Matlab-based simulation study on CoMP between macro and small cells in HetNets is presented. Comparative analyses and evaluations are also made for different CoMP schemes under different deployed scenarios. At the same time, a new CoMP UE selection criterion is proposed to fit the modified round robin scheduling deployed in simulation and optimize the resource allocation among CoMP and non-CoMP UEs

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system
    corecore