5,525 research outputs found

    Sparse Array DFT Beamformers for Wideband Sources

    Full text link
    Sparse arrays are popular for performance optimization while keeping the hardware and computational costs down. In this paper, we consider sparse arrays design method for wideband source operating in a wideband jamming environment. Maximizing the signal-to-interference plus noise ratio (MaxSINR) is adopted as an optimization objective for wideband beamforming. Sparse array design problem is formulated in the DFT domain to process the source as parallel narrowband sources. The problem is formulated as quadratically constraint quadratic program (QCQP) alongside the weighted mixed l1−∞l_{1-\infty}-norm squared penalization of the beamformer weight vector. The semidefinite relaxation (SDR) of QCQP promotes sparse solutions by iteratively re-weighting beamformer based on previous iteration. It is shown that the DFT approach reduces the computational cost considerably as compared to the delay line approach, while efficiently utilizing the degrees of freedom to harness the maximum output SINR offered by the given array aperture

    Neural Network-Based DOA Estimation in the Presence of Non-Gaussian Interference

    Full text link
    This work addresses the problem of direction-of-arrival (DOA) estimation in the presence of non-Gaussian, heavy-tailed, and spatially-colored interference. Conventionally, the interference is considered to be Gaussian-distributed and spatially white. However, in practice, this assumption is not guaranteed, which results in degraded DOA estimation performance. Maximum likelihood DOA estimation in the presence of non-Gaussian and spatially colored interference is computationally complex and not practical. Therefore, this work proposes a neural network (NN) based DOA estimation approach for spatial spectrum estimation in multi-source scenarios with a-priori unknown number of sources in the presence of non-Gaussian spatially-colored interference. The proposed approach utilizes a single NN instance for simultaneous source enumeration and DOA estimation. It is shown via simulations that the proposed approach significantly outperforms conventional and NN-based approaches in terms of probability of resolution, estimation accuracy, and source enumeration accuracy in conditions of low SIR, small sample support, and when the angular separation between the source DOAs and the spatially-colored interference is small.Comment: Submitted to IEEE Transactions on Aerospace and Electronic System

    Neural Networks for improved signal source enumeration and localization with unsteered antenna arrays

    Get PDF
    Direction of Arrival estimation using unsteered antenna arrays, unlike mechanically scanned or phased arrays, requires complex algorithms which perform poorly with small aperture arrays or without a large number of observations, or snapshots. In general, these algorithms compute a sample covriance matrix to obtain the direction of arrival and some require a prior estimate of the number of signal sources. Herein, artificial neural network architectures are proposed which demonstrate improved estimation of the number of signal sources, the true signal covariance matrix, and the direction of arrival. The proposed number of source estimation network demonstrates robust performance in the case of coherent signals where conventional methods fail. For covariance matrix estimation, four different network architectures are assessed and the best performing architecture achieves a 20 times improvement in performance over the sample covariance matrix. Additionally, this network can achieve comparable performance to the sample covariance matrix with 1/8-th the amount of snapshots. For direction of arrival estimation, preliminary results are provided comparing six architectures which all demonstrate high levels of accuracy and demonstrate the benefits of progressively training artificial neural networks by training on a sequence of sub- problems and extending to the network to encapsulate the entire process

    R-dimensional ESPRIT-type algorithms for strictly second-order non-circular sources and their performance analysis

    Full text link
    High-resolution parameter estimation algorithms designed to exploit the prior knowledge about incident signals from strictly second-order (SO) non-circular (NC) sources allow for a lower estimation error and can resolve twice as many sources. In this paper, we derive the R-D NC Standard ESPRIT and the R-D NC Unitary ESPRIT algorithms that provide a significantly better performance compared to their original versions for arbitrary source signals. They are applicable to shift-invariant R-D antenna arrays and do not require a centrosymmetric array structure. Moreover, we present a first-order asymptotic performance analysis of the proposed algorithms, which is based on the error in the signal subspace estimate arising from the noise perturbation. The derived expressions for the resulting parameter estimation error are explicit in the noise realizations and asymptotic in the effective signal-to-noise ratio (SNR), i.e., the results become exact for either high SNRs or a large sample size. We also provide mean squared error (MSE) expressions, where only the assumptions of a zero mean and finite SO moments of the noise are required, but no assumptions about its statistics are necessary. As a main result, we analytically prove that the asymptotic performance of both R-D NC ESPRIT-type algorithms is identical in the high effective SNR regime. Finally, a case study shows that no improvement from strictly non-circular sources can be achieved in the special case of a single source.Comment: accepted at IEEE Transactions on Signal Processing, 15 pages, 6 figure
    • …
    corecore