6,228 research outputs found

    Fair Coexistence of Scheduled and Random Access Wireless Networks: Unlicensed LTE/WiFi

    Get PDF
    We study the fair coexistence of scheduled and random access transmitters sharing the same frequency channel. Interest in coexistence is topical due to the need for emerging unlicensed LTE technologies to coexist fairly with WiFi. However, this interest is not confined to LTE/WiFi as coexistence is likely to become increasingly commonplace in IoT networks and beyond 5G. In this article we show that mixing scheduled and random access incurs and inherent throughput/delay cost, the cost of heterogeneity. We derive the joint proportional fair rate allocation, which casts useful light on current LTE/WiFi discussions. We present experimental results on inter-technology detection and consider the impact of imperfect carrier sensing.Comment: 14 pages, 8 figures, journa

    μ\muNap: Practical Micro-Sleeps for 802.11 WLANs

    Get PDF
    In this paper, we revisit the idea of putting interfaces to sleep during 'packet overhearing' (i.e., when there are ongoing transmissions addressed to other stations) from a practical standpoint. To this aim, we perform a robust experimental characterisation of the timing and consumption behaviour of a commercial 802.11 card. We design μ\muNap, a local standard-compliant energy-saving mechanism that leverages micro-sleep opportunities inherent to the CSMA operation of 802.11 WLANs. This mechanism is backwards compatible and incrementally deployable, and takes into account the timing limitations of existing hardware, as well as practical CSMA-related issues (e.g., capture effect). According to the performance assessment carried out through trace-based simulation, the use of our scheme would result in a 57% reduction in the time spent in overhearing, thus leading to an energy saving of 15.8% of the activity time.Comment: 15 pages, 12 figure

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11
    corecore