11 research outputs found

    Joint Channel Estimation Algorithm via Weighted Homotopy for Massive MIMO OFDM System

    Get PDF
    Massive (or large-scale) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system is widely acknowledged as a key technology for future communication. One main challenge to implement this system in practice is the high dimensional channel estimation, where the large number of channel matrix entries requires prohibitively high computational complexity. To solve this problem efficiently, a channel estimation approach using few number of pilots is necessary. In this paper, we propose a weighted Homotopy based channel estimation approach which utilizes the sparse nature in MIMO channels to achieve a decent channel estimation performance with much less pilot overhead. Moreover, inspired by the fact that MIMO channels are observed to have approximately common support in a neighborhood, an information exchange strategy based on the proposed approach is developed to further improve the estimation accuracy and reduce the required number of pilots through joint channel estimation. Compared with the traditional sparse channel estimation methods, the proposed approach can achieve more than 2dB gain in terms of mean square error (MSE) with the same number of pilots, or achieve the same performance with much less pilots

    Channel Estimation for Massive MIMO Systems

    Get PDF
    Massive multiple input multiple output (MIMO) systems can significantly improve the channel capacity by deploying multiple antennas at the transmitter and receiver. Massive MIMO is considered as one of key technologies of the next generation of wireless communication systems. However, with the increase of the number of antennas at the base station, a large number of unknown channel parameters need to be dealt with, which makes the channel estimation a challenging problem. Hence, the research on the channel estimation for massive MIMO is of great importance to the development of the next generation of communication systems. The wireless multipath channel exhibits sparse characteristics, but the traditional channel estimation techniques do not make use of the sparsity. The channel estimation based on compressive sensing (CS) can make full use of the channel sparsity, while use fewer pilot symbols. In this work, CS channel estimation methods are proposed for massive MIMO systems in complex environments operating in multipath channels with static and time-varying parameters. Firstly, a CS channel estimation algorithm for massive MIMO systems with Orthogonal Frequency Division Multiplexing (OFDM) is proposed. By exploiting the spatially common sparsity in the virtual angular domain of the massive MIMO channels, a dichotomous-coordinate-decent-joint-sparse-recovery (DCD-JSR) algorithm is proposed. More specifically, by considering the channel is static over several OFDM symbols and exhibits common sparsity in the virtual angular domain, the DCD-JSR algorithm can jointly estimate multiple sparse channels with low computational complexity. The simulation results have shown that, compared to existing channel estimation algorithms such as the distributed-sparsity-adaptive-matching-pursuit (DSAMP) algorithm, the proposed DCD-JSR algorithm has significantly lower computational complexity and better performance. Secondly, these results have been extended to the case of multipath channels with time-varying parameters. This has been achieved by employing the basis expansion model to approximate the time variation of the channel, thus the modified DCD-JSR algorithm can estimate the channel in a massive MIMO OFDM system operating over frequency selective and highly mobile wireless channels. Simulation results have shown that, compared to the DCD-JSR algorithm designed for time-invariant channels, the modified DCD-JSR algorithm provides significantly better estimation performance in fast time-varying channels

    MIMO broadcast channels with Gaussian CSIT and application to location based CSIT

    Full text link

    CSI-Free Geometric Symbol Detection via Semi-supervised Learning and Ensemble Learning

    Get PDF
    Symbol detection (SD) plays an important role in a digital communication system. However, most SD algorithms require channel state information (CSI), which is often difficult to estimate accurately. As a consequence, it is challenging for these SD algorithms to approach the performance of the maximum likelihood detection (MLD) algorithm. To address this issue, we employ both semi-supervised learning and ensemble learning to design a flexible parallelizable approach in this paper. First, we prove theoretically that the proposed algorithms can arbitrarily approach the performance of the MLD algorithm with perfect CSI. Second, to enable parallel implementation and also enhance design flexibility, we further propose a parallelizable approach for multi-output systems. Finally, comprehensive simulation results are provided to demonstrate the effectiveness and superiority of the designed algorithms. In particular, the proposed algorithms approach the performance of the MLD algorithm with perfect CSI, and outperform it when the CSI is imperfect. Interestingly, a detector constructed with received signals from only two receiving antennas (less than the size of the whole receiving antenna array) can also provide good detection performance

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Compressive Sensing of Multiband Spectrum towards Real-World Wideband Applications.

    Get PDF
    PhD Theses.Spectrum scarcity is a major challenge in wireless communication systems with their rapid evolutions towards more capacity and bandwidth. The fact that the real-world spectrum, as a nite resource, is sparsely utilized in certain bands spurs the proposal of spectrum sharing. In wideband scenarios, accurate real-time spectrum sensing, as an enabler of spectrum sharing, can become ine cient as it naturally requires the sampling rate of the analog-to-digital conversion to exceed the Nyquist rate, which is resourcecostly and energy-consuming. Compressive sensing techniques have been applied in wideband spectrum sensing to achieve sub-Nyquist-rate sampling of frequency sparse signals to alleviate such burdens. A major challenge of compressive spectrum sensing (CSS) is the complexity of the sparse recovery algorithm. Greedy algorithms achieve sparse recovery with low complexity but the required prior knowledge of the signal sparsity. A practical spectrum sparsity estimation scheme is proposed. Furthermore, the dimension of the sparse recovery problem is proposed to be reduced, which further reduces the complexity and achieves signal denoising that promotes recovery delity. The robust detection of incumbent radio is also a fundamental problem of CSS. To address the energy detection problem in CSS, the spectrum statistics of the recovered signals are investigated and a practical threshold adaption scheme for energy detection is proposed. Moreover, it is of particular interest to seek the challenges and opportunities to implement real-world CSS for systems with large bandwidth. Initial research on the practical issues towards the real-world realization of wideband CSS system based on the multicoset sampler architecture is presented. In all, this thesis provides insights into two critical challenges - low-complexity sparse recovery and robust energy detection - in the general CSS context, while also looks into some particular issues towards the real-world CSS implementation based on the i multicoset sampler
    corecore