185 research outputs found

    Survivable Cloud Networking Services

    Get PDF
    Cloud computing paradigms are seeing very strong traction today and are being propelled by advances in multi-core processor, storage, and high-bandwidth networking technologies. Now as this growth unfolds, there is a growing need to distribute cloud services over multiple data-center sites in order to improve speed, responsiveness, as well as reliability. Overall, this trend is pushing the need for virtual network (VN) embedding support at the underlying network layer. Moreover, as more and more mission-critical end-user applications move to the cloud, associated VN survivability concerns are also becoming a key requirement in order to guarantee user service level agreements. Overall, several different types of survivable VN embedding schemes have been developed in recent years. Broadly, these schemes offer resiliency guarantees by pre-provisioning backup resources at service setup time. However, most of these solutions are only geared towards handling isolated single link or single node failures. As such, these designs are largely ineffective against larger regional stressors that can result in multiple system failures. In particular, many cloud service providers are very concerned about catastrophic disaster events such as earthquakes, floods, hurricanes, cascading power outages, and even malicious weapons of mass destruction attacks. Hence there is a pressing need to develop more robust cloud recovery schemes for disaster recovery that leverage underlying distributed networking capabilities. In light of the above, this dissertation proposes a range of solutions to address cloud networking services recovery under multi-failure stressors. First, a novel failure region-disjoint VN protection scheme is proposed to achieve improved efficiency for pre-provisioned protection. Next, enhanced VN mapping schemes are studied with probabilistic considerations to minimize risk for VN requests under stochastic failure scenarios. Finally, novel post-fault VN restoration schemes are also developed to provide viable last-gap recovery mechanisms using partial and full VN remapping strategies. The performance of these various solutions is evaluated using discrete event simulation and is also compared to existing strategies

    Towards a Virtualized Next Generation Internet

    Get PDF
    A promising solution to overcome the Internet ossification is network virtualization in which Internet Service Providers (ISPs) are decoupled into two tiers: service providers (SPs), and infrastructure providers (InPs). The former maintain and customize virtual network(s) to meet the service requirement of end-users, which is mapped to the physical network infrastructure that is managed and deployed by the latter via the Virtual Network Embedding (VNE) process. VNE consists of two major components: node assignment, and link mapping, which can be shown to be NP-Complete. In the first part of the dissertation, we present a path-based ILP model for the VNE problem. Our solution employs a branch-and-bound framework to resolve the integrity constraints, while embedding the column generation process to effectively obtain the lower bound for branch pruning. Different from existing approaches, the proposed solution can either obtain an optimal solution or a near-optimal solution with guarantee on the solution quality. A common strategy in VNE algorithm design is to decompose the problem into two sequential sub-problems: node assignment (NA) and link mapping (LM). With this approach, it is inexorable to sacrifice the solution quality since the NA is not holistic and not-reversible. In the second part, we are motivated to answer the question: Is it possible to maintain the simplicity of the Divide-and-Conquer strategy while still achieving optimality? Our answer is based on a decomposition framework supported by the Primal-Dual analysis of the path-based ILP model. This dissertation also attempts to address issues in two frontiers of network virtualization: survivability, and integration of optical substrate. In the third part, we address the survivable network embedding (SNE) problem from a network flow perspective, considering both splittable and non-splittable flows. In addition, the explosive growth of the Internet traffic calls for the support of a bandwidth abundant optical substrate, despite the extra dimensions of complexity caused by the heterogeneities of optical resources, and the physical feature of optical transmission. In this fourth part, we present a holistic view of motivation, architecture, and challenges on the way towards a virtualized optical substrate that supports network virtualization

    Survivable Virtual Infrastructure Mapping in Virtualized Data Centers

    Get PDF
    In a virtualized data center, survivability can be enhanced by creating redundant VMs as backup for VMs such that after VM or server failures, affected services can be quickly switched over to backup VMs. To enable flexible and efficient resource management, we propose to use a service-aware approach in which multiple correlated Virtual Machines (VMs) and their backups are grouped together to form a Survivable Virtual Infrastructure (SVI) for a service or a tenant. A fundamental problem in such a system is to determine how to map each SVI to a physical data center network such that operational costs are minimized subject to the constraints that each VM’s resource requirements are met and bandwidth demands between VMs can be guaranteed before and after failures. This problem can be naturally divided into two sub-problems: VM Placement (VMP) and Virtual Link Mapping (VLM). We present a general optimization framework for this mapping problem. Then we present an efficient algorithm for the VMP subproblem as well as a polynomial-time algorithm that optimally solves the VLM subproblem, which can be used as subroutines in the framework. We also present an effective heuristic algorithm that jointly solves the two subproblems. It has been shown by extensive simulation results based on the real VM data traces collected from the green data center at Syracuse University that compared with the First Fit Descending (FFD) and single shortest path based baseline algorithm, both our VMP+VLM algorithm and joint algorithm significantly reduce the reserved bandwidth, and yield comparable results in terms of the number of active servers

    Survivable Virtual Network Embedding in Transport Networks

    Get PDF
    Network Virtualization (NV) is perceived as an enabling technology for the future Internet and the 5th Generation (5G) of mobile networks. It is becoming increasingly difficult to keep up with emerging applications’ Quality of Service (QoS) requirements in an ossified Internet. NV addresses the current Internet’s ossification problem by allowing the co-existence of multiple Virtual Networks (VNs), each customized to a specific purpose on the shared Internet. NV also facilitates a new business model, namely, Network-as-a-Service (NaaS), which provides a separation between applications and services, and the networks supporting them. 5G mobile network operators have adopted the NaaS model to partition their physical network resources into multiple VNs (also called network slices) and lease them to service providers. Service providers use the leased VNs to offer customized services satisfying specific QoS requirements without any investment in deploying and managing a physical network infrastructure. The benefits of NV come at additional resource management challenges. A fundamental problem in NV is to efficiently map the virtual nodes and virtual links of a VN to physical nodes and paths, respectively, known as the Virtual Network Embedding (VNE) problem. A VNE that can survive physical resource failures is known as the survivable VNE (SVNE) problem, and has received significant attention recently. In this thesis, we address variants of the SVNE problem with different bandwidth and reliability requirements for transport networks. Specifically, the thesis includes four main contributions. First, a connectivity-aware VNE approach that ensures VN connectivity without bandwidth guarantee in the face of multiple link failures. Second, a joint spare capacity allocation and VNE scheme that provides bandwidth guarantee against link failures by augmenting VNs with necessary spare capacity. Third, a generalized recovery mechanism to re-embed the VNs that are impacted by a physical node failure. Fourth, a reliable VNE scheme with dedicated protection that allows tuning of available bandwidth of a VN during a physical link failure. We show the effectiveness of the proposed SVNE schemes through extensive simulations. We believe that the thesis can set the stage for further research specially in the area of automated failure management for next generation networks
    • …
    corecore