1,724 research outputs found

    Regression and Classification for Direction-of-Arrival Estimation with Convolutional Recurrent Neural Networks

    Full text link
    We present a novel learning-based approach to estimate the direction-of-arrival (DOA) of a sound source using a convolutional recurrent neural network (CRNN) trained via regression on synthetic data and Cartesian labels. We also describe an improved method to generate synthetic data to train the neural network using state-of-the-art sound propagation algorithms that model specular as well as diffuse reflections of sound. We compare our model against three other CRNNs trained using different formulations of the same problem: classification on categorical labels, and regression on spherical coordinate labels. In practice, our model achieves up to 43% decrease in angular error over prior methods. The use of diffuse reflection results in 34% and 41% reduction in angular prediction errors on LOCATA and SOFA datasets, respectively, over prior methods based on image-source methods. Our method results in an additional 3% error reduction over prior schemes that use classification based networks, and we use 36% fewer network parameters

    5G Positioning and Mapping with Diffuse Multipath

    Get PDF
    5G mmWave communication is useful for positioning due to the geometric connection between the propagation channel and the propagation environment. Channel estimation methods can exploit the resulting sparsity to estimate parameters(delay and angles) of each propagation path, which in turn can be exploited for positioning and mapping. When paths exhibit significant spread in either angle or delay, these methods breakdown or lead to significant biases. We present a novel tensor-based method for channel estimation that allows estimation of mmWave channel parameters in a non-parametric form. The method is able to accurately estimate the channel, even in the absence of a specular component. This in turn enables positioning and mapping using only diffuse multipath. Simulation results are provided to demonstrate the efficacy of the proposed approach

    Online DOA estimation using real eigenbeam ESPRIT with propagation vector matching

    Get PDF
    International audienceThe Eigenbeam estimation of signal parameters via rotational invariance technique (EB-ESPRIT) [1] is a method to estimate multiple directions-of-arrival (DOAs) of sound sources from a spherical microphone array recording in the spherical harmonics domain (SHD). The method, first, constructs a signal subspace from the SHD signal and then makes use of the fact that, for plane-wave sources, the signal subspace is spanned by the (complex conjugate) spherical harmonic vectors at the source directions. The DOAs are then estimated from the signal subspace using recurrence relations of spherical harmonics.In recent publications, the singularity and ambiguity problems of the original EB-ESPRIT have been solved by jointly combining several types of recurrence relations. The state-of-the-art EB-ESPRIT, denoted as DOA-vector EB-ESPRIT, is based on three recurrence relations [2,3]. This EB-ESPRIT variant can estimate the source DOAs with significantly higher accuracy compared to the other EB-ESPRIT variants [3]. However, a permutation problem arises, which can be solved by using, for example, a joint diagonalization method [3].For parametric spatial audio signal processing purposes in the short-time Fourier transform (STFT) domain, DOA estimates are usually needed per time-frame and frequency bin. In principle, one can use the DOA-vector EB-ESPRIT method to estimate the source DOAs per time-frequency bin in an online manner. However, due to the eigendecompostion of the PSD matrix and the joint diagonalization procedure, the computational cost might be too large for many real-time applications.In this work, we propose a computationally more efficient version of the DOA-vector EB-ESPRIT based on real spherical harmonics recurrence relations. First, we separate the real and imaginary parts of the real SHD signal in the STFT domain and then construct a real signal subspace thereof, which can be recursively estimated using the deflated projection approximation subspace tracking (PASTd) [4] method. For the case of one source per time-frequency bin, the joint diagonalization is not necessary and we can simplify the EB-ESPRIT equations. For the case of two sources, the plane-wave propagation vectors can directly be estimated from the signal subspace eigenvectors by employing properties of the propagation vectors. This method can be seen as a higher order ambisonics extension of the robust B-format DOA estimation in [5]. The proposed method for estimating two DOAs can be summarized as follows:1. Separate real and imaginary parts of the real SHD signal in the STFT domain.2. Recursively estimate the signal subspace eigenvectors using PASTd.3. Estimate the two plane-wave propagation vectors from the signal subspace eigenvectors by using that they span the same subspace and by using properties of the propagation vectors (subspace-propagation vector matching).4. Estimate the DOAs by using three types of real spherical harmonics recurrence relations.Alternatively, one can estimate the DOAs analogously to the complex DOA-vector EB-ESPRIT using the joint diagonalization method proposed in [3].For the evaluation, we simulate SHD signals up to third order with one and two speech sources in reverberant and noisy environments. For the one-source scenarios, we compare the real DOA-vector EB-ESPRIT with subspace estimation based on singular value decomposition (SVD) against PASTd. For the two-source scenarios, we compare the real DOA-vector EB-ESPRIT with joint diagonalization against subspace-propagation vector matching and the robust B-format DOA estimation method.We analyze the angular distributions of the DOA estimates and find, that the DOA estimation using PASTd for the signal subspace estimation is slightly less accurate than the SVD based method but computationally much more efficient. For the estimation of two DOAs, the EB-ESPRIT based methods outperform the robust B-format estimation method when higher SHD orders are considered. The joint diagonalization method is more accurate than the subspace-propagation vector matching method. However, the latter is computationally more efficient.References:[1] H. Teutsch and W. Kellermann, “Detection and localization of multiple wideband acoustic sources based on wavefield decomposition using spherical apertures,” in Proc. IEEE Intl. Conf. Acoust., Speech Signal Proc. (ICASSP), Mar. 2008, pp. 5276–5279.[2] B. Jo and J. W. Choi, “Nonsingular EB-ESPRIT for the localization of early reflections in a room,” J. Acoust. Soc. Am., vol. 144, no. 3, p. 1882, Sep. 2018.[3] A. Herzog and E. A. P. Habets, “Eigenbeam-ESPRIT for DOA-vector estimation,” IEEE Signal Process. Lett., vol. 26, no. 4, pp. 572-576, April 2019.[4] B. Yang – “Projection Approximation Subspace Tracking, IEEE Trans. Sig. Proc.,” vol. 43, no. 1, Jan. 1995.[5] O. Thiergart and E.A.P. Habets, “Robust direction-of-arrival estimation of two simultaneous plane waves from a B-format signal,” IEEE 27th Conv. of Electrical and Electronics Engineers in Israel, Nov. 2012

    Experimental analysis of multidimensional radio channels

    Get PDF
    In this thesis new systems for radio channel measurements including space and polarization dimensions are developed for studying the radio propagation in wideband mobile communication systems. Multidimensional channel characterization is required for building channel models for new systems capable of exploiting the spatial nature of the channel. It also gives insight into the dominant propagation mechanisms in complex radio environments, where their prediction is difficult, such as urban and indoor environments. The measurement systems are based on the HUT/IDC wideband radio channel sounder, which was extended to enable real-time multiple output channel measurements at practical mobile speeds at frequencies up to 18 GHz. Two dual-polarized antenna arrays were constructed for 2 GHz, having suitable properties for characterizing the 3-D spatial radio channel at both ends of a mobile communication link. These implementations and their performance analysis are presented. The usefulness of the developed measurement systems is demonstrated by performing channel measurements at 2 GHz and analyzing the experimental data. Spatial channels of both the mobile and base stations are analyzed, as well as the double-directional channel that fully characterizes the propagation between two antennas. It is shown through sample results that spatial domain channel measurements can be used to gain knowledge on the dominant propagation mechanisms or verify the current assumptions. Also new statistical information about scatterer distribution at the mobile station in urban environment is presented based on extensive real-time measurements. The developed techniques and collected experimental data form a good basis for further comparison with existing deterministic propagation models and development of new spatial channel models.reviewe

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Angular dispersion of radio waves in mobile channels

    Get PDF
    Multi-antenna techniques are an important solution for significantly increasing the bandwidth efficiency of mobile wireless data transmission systems. Effective and reliable design of these multi-antenna systems requires thorough knowledge of radiowave propagation in the urban environment. The aim of the work presented in this thesis is to obtain a better physical understanding of radiowave propagation in mobile radio channels in order to provide a basis for the improvement of radiowave propagation prediction techniques for urban environments using knowledge from 3-D propagation experiments and simulations combined with space-wave modelling. In particular, the work focusses on: the development of an advanced 3-D mobile channel sounding system, obtaining propagation measurement data from mobile radio propagation experiments, the analysis of measured data and the modelling of angular dispersive scattering effects for the improvement of deterministic propagation prediction models. The first part of the study presents the design, implementation and verification of a wideband high-resolution measurement system for the characterisation of angular dispersion in mobile channels. The system uses complex impulse response data obtained from a novel 3-D tilted-cross switched antenna array as input to an improved version of 3-D Unitary ESPRIT. It is capable of characterising the delay and angular properties of physically-nonstationary radio channels at moderate urban speeds with high resolution in both azimuth and elevation. For the first time, omnidirectional video data that were captured during the measurements are used in combination with the measurement results to accurately identify and relate the received radio waves directly to the actual environment while moving through it. The second part of the study presents the results of experiments in which the highresolution measurement system, described in the first part, is used in several mobile outdoor experiments in different scenarios. The objective of these measurements was to gain more knowledge in order to improve the understanding of radiowave propagation. From these results the dispersive effects in the angular domain, caused by rough building surfaces and other irregular structures was paid particular attention. These effects not only influence the total amount of received power in dense urban environments, but can also have a large impact on the performance and deployment of multi-antenna systems. To improve the data representation and support further data analysis a hierarchical clustering method is presented that can successfully identify clusters of multipath signal components in multidimensional data. By using the data obtained from an omnidirectional video camera the clusters can be related directly to the environment and the scattering effects of specific objects can be isolated. These results are important in order to improve and calibrate deterministic propagation models. In the third part of the study a new method is presented to account for the angular dispersion caused by irregular surfaces in ray-tracing based propagation prediction models. The method is based on assigning an effective roughness to specific surfaces. Unlike the conventional reflection reduction factor for Gaussian surfaces, that only reduces the ray power, the new method also distributes power in the angular domain. The results of clustered measurement data are used to calibrated the model and show that this leads to improved channel representations that are better matched to the real-world channel behavior

    Estimation of Radio Channel Parameters

    Get PDF
    Kurzfassung Diese Dissertation behandelt die Schätzung der Modellparameter einer Momentanaufnahme des Mobilfunkkanals. Das besondere Augenmerk liegt zum einen auf der Entwicklung eines generischen Datenmodells für den gemessenen Funkkanal, welches für die hochauflösende Parameterschätzung geeignet ist. Der zweite Schwerpunkt dieser Arbeit ist die Entwicklung eines robusten Parameterschätzers für die Bestimmung der Parameter des entworfenen Modells aus Funkkanalmessdaten. Entsprechend dieser logischen Abfolge ist auch der Aufbau dieser Arbeit. Im ersten Teil wird ausgehend von einem aus der Literatur bekannten strahlenoptischen Modell eine algebraisch handhabbare Darstellung von beobachteten Wellenausbreitungspfaden entwickelt. Das mathematische Modell erlaubt die Beschreibung von SISO (single-input-single-output)- Übertragungssystemen, also von Systemen mit einer Sendeantenne und einer Empfangsantenne, als auch die Beschreibung von solchen Systemen mit mehreren Sende- und/oder Empfangsantennen. Diese Systeme werden im Allgemeinen auch als SIMO- (single-input-multiple-output), MISO- (multiple-input-single-output) oder MIMO-Systeme (multiple-input-multiple-output) bezeichnet. Im Gegensatz zu bekannten Konzepten enthält das entwickelte Modell keine Restriktionen bezüglich der modellierbaren Antennenarrayarchitekturen. Dies ist besonders wichtig in Hinblick auf die möglichst vollständige Erfassung der räumlichen Struktur des Funkkanals. Die Flexibilität des Modells ist eine Grundvoraussetzung für die optimale Anpassung der Antennenstruktur an die Messaufgabe. Eine solche angepasste Antennenarraystruktur ist zum Beispiel eine zylindrische Anordnung von Antennenelementen. Sie ist gut geeignet für die Erfassung der räumlichen Struktur des Funkkanals (Azimut und Elevation) in so genannten Outdoor- Funkszenarien. Weiterhin wird im ersten Teil eine neue Komponente des Funkkanaldatenmodells eingeführt, welche den Beitrag verteilter (diffuser) Streuungen zur Funkübertragung beschreibt. Die neue Modellkomponente spielt eine Schlüsselrolle bei der Entwicklung eines robusten Parameterschätzers im Hauptteil dieser Arbeit. Die fehlende Modellierung der verteilten Streuungen ist eine der Hauptursachen für die begrenzte Anwendbarkeit und die oft kritisierte fehlende Robustheit von hochauflösenden Funkkanalparameterschätzern, die in der Literatur etabliert sind. Das neue Datenmodell beschreibt die so genannten dominanten Ausbreitungspfade durch eine deterministische Abbildung der Pfadparameter auf den gemessenen Funkkanal. Der Beitrag der verteilten Streuungen wird mit Hilfe eines zirkularen mittelwertfreien Gaußschen Prozesses beschrieben. Die Modellparameter der verteilten Streuungen beschreiben dabei die Kovarianzmatrix dieses Prozesses. Basierend auf dem entwickelten Datenmodell wird im Anschluss kurz über aktuelle Konzepte für Funkkanalmessgeräte, so genannte Channel-Sounder, diskutiert. Im zweiten Teil dieser Arbeit werden in erster Linie Ausdrücke zur Bestimmung der erzielbaren Messgenauigkeit eines Channel-Sounders abgeleitet. Zu diesem Zweck wird die untere Schranke für die Varianz der geschätzten Modellparameter, das heißt der Messwerte, bestimmt. Als Grundlage für die Varianzabschätzung wird das aus der Parameterschätztheorie bekannte Konzept der Cramér-Rao-Schranke angewandt. Im Rahmen der Ableitung der Cramér-Rao-Schranke werden außerdem wichtige Gesichtspunkte für die Entwicklung eines effizienten Parameterschätzers diskutiert. Im dritten Teil der Arbeit wird ein Schätzer für die Bestimmung der Ausbreitungspfadparameter nach dem Maximum-Likelihood-Prinzip entworfen. Nach einer kurzen Übersicht über existierende Konzepte zur hochauflösenden Funkkanalparameterschätzung wird die vorliegende Schätzaufgabe analysiert und in Hinsicht ihres Typs klassifiziert. Unter der Voraussetzung, dass die Parameter der verteilten Streuungen bekannt sind, lässt sich zeigen, daß sich die Schätzung der Parameter der Ausbreitungspfade als ein nichtlineares gewichtetes kleinstes Fehlerquadratproblem auffassen lässt. Basierend auf dieser Erkenntnis wird ein generischer Algorithmus zur Bestimmung einer globalen Startlösung für die Parameter eines Ausbreitungspfades vorgeschlagen. Hierbei wird von dem Konzept der Structure-Least-Squares (SLS)-Probleme Gebrauch gemacht, um die Komplexität des Schätzproblems zu reduzieren. Im folgenden Teil dieses Abschnitts wird basierend auf aus der Literatur bekannten robusten numerischen Algorithmen ein Schätzer zur genauen Bestimmung der Ausbreitungspfadparameter abgeleitet. Im letzten Teil dieses Abschnitts wird die Anwendung unterraumbasierter Schätzer zur Bestimmung der Ausbreitungspfadparameter diskutiert. Es wird ein speichereffizienter Algorithmus zur Signalraumschätzung entwickelt. Dieser Algorithmus ist eine Grundvoraussetzung für die Anwendung von mehrdimensionalen Parameterschätzern wie zum Beispiel des R-D unitary ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) zur Bestimmung von Funkkanalparametern aus MIMO-Funkkanalmessungen. Traditionelle Verfahren zur Signalraumschätzung sind hier im Allgemeinen nicht anwendbar, da sie einen zu großen Speicheraufwand erfordern. Außerdem wird in diesem Teil gezeigt, dass ESPRIT-Algorithmen auch zur Parameterschätzung von Daten mit so genannter versteckter Rotations-Invarianzstruktur eingesetzt werden können. Als Beispiel wird ein ESPRIT-basierter Algorithmus zur Richtungsschätzung in Verbindung mit multibeam-Antennenarrays (CUBA) abgeleitet. Im letzten Teil dieser Arbeit wird ein Maximum-Likelihood-Schätzer für die neue Komponente des Funkkanals, welche die verteilten Streuungen beschreibt, entworfen. Ausgehend vom Konzept des iterativen Maximum-Likelihood-Schätzers wird ein Algorithmus entwickelt, der hinreichend geringe numerische Komplexität besitzt, so dass er praktisch anwendbar ist. In erster Linie wird dabei von der Toeplitzstruktur der zu schätzenden Kovarianzmatrix Gebrauch gemacht. Aufbauend auf dem Schätzer für die Parameter der Ausbreitungspfade und dem Schätzer für die Parameter der verteilten Streuungen wird ein Maximum-Likelihood-Schätzer entwickelt (RIMAX), der alle Parameter des in Teil I entwickelten Modells der Funkanalmessung im Verbund schätzt. Neben den geschätzten Parametern des Datenmodells liefert der Schätzer zusätzlich Zuverlässigkeitsinformationen. Diese werden unter anderem zur Bestimmung der Modellordnung, das heißt zur Bestimmung der Anzahl der dominanten Ausbreitungspfade, herangezogen. Außerdem stellen die Zuverlässigkeitsinformationen aber auch ein wichtiges Schätzergebnis dar. Die Zuverlässigkeitsinformationen machen die weitere Verarbeitung und Wertung der Messergebnisse möglich.The theme of this thesis is the estimation of model parameters of a radio channel snapshot. The main focus was the development of a general data model for the measured radio channel, suitable for both high resolution channel parameter estimation on the one hand, and the development of a robust parameter estimator for the parameters of the designed parametric radio channel model, in line with this logical work flow is this thesis. In the first part of this work an algebraic representation of observed propagation paths is developed using a ray-optical model known from literature. The algebraic framework is suitable for the description of SISO (single-input-single-output) radio transmission systems. A SISO system uses one antenna as the transmitter (Tx) and one antenna as the receiver (Rx). The derived expression for the propagation paths is also suitable to describe SIMO (single-input-multiple-output), MISO (multiple-input-single-output), and MIMO (multiple-input-multiple-output) radio channel measurements. In contrast to other models used for high resolution channel parameter estimation the derived model makes no restriction regarding the structure of the antenna array used throughout the measurement. This is important since the ultimate goal in radio channel sounding is the complete description of the spatial (angular) structure of the radio channel at Tx and Rx. The flexibility of the data model is a prerequisite for the optimisation of the antenna array structure with respect to the measurement task. Such an optimised antenna structure is a stacked uniform circular beam array, i.e., a cylindrical arrangement of antenna elements. This antenna array configuration is well suited for the measurement of the spatial structure of the radio channel at Tx and/or Rx in outdoor-scenarios. Furthermore, a new component of the radio channel model is introduced in the first part of this work. It describes the contribution of distributed (diffuse) scattering to the radio transmission. The new component is key for the development of a robust radio channel parameter estimator, which is derived in the main part of this work. The ignorance of the contribution of distributed scattering to radio propagation is one of the main reasons why high-resolution radio channel parameter estimators fail in practice. Since the underlying data model is wrong the estimators produce erroneous results. The improved model describes the so called dominant propagation paths by a deterministic mapping of the propagation path parameters to the channel observation. The contribution of the distributed scattering is modelled as a zero-mean circular Gaussian process. The parameters of the distributed scattering process determine the structure of the covariance matrix of this process. Based on this data model current concepts for radio channel sounding devices are discussed. In the second part of this work expressions for the accuracy achievable by a radio channel sounder are derived. To this end the lower bound on the variance of the measurements i.e. the parameter estimates is derived. As a basis for this evaluation the concept of the Cramér-Rao lower bound is employed. On the way to the Cramér-Rao lower bound for all channel model parameters, important issues for the development of an appropriate parameter estimator are discussed. Among other things the coupling of model parameters is also discussed. In the third part of this thesis, an estimator, for the propagation path parameters is derived. For the estimator the 'maximum-likelihood' approach is employed. After a short overview of existing high-resolution channel parameter estimators the estimation problem is classified. It is shown, that the estimation of the parameters of the propagation paths can be understood as a nonlinear weighted least squares problem, provided the parameters of the distributed scattering process are known. Based on this observation a general algorithm for the estimation of raw parameters for the observed propagation paths is developed. The algorithm uses the concept of structured-least-squares (SLS) and compressed maximum likelihood to reduce the numerical complexity of the estimation problem. A robust estimator for the precise estimation of the propagation path parameters is derived. The estimator is based on concepts well known from nonlinear local optimisation theory. In the last part of this chapter the application of subspace based parameter estimation algorithms for path parameter estimation is discussed. A memory efficient estimator for the signal subspace needed by, e.g., R-D unitary ESPRIT is derived. This algorithm is a prerequisite for the application of signal subspace based algorithms to MIMO-channel sounding measurements. Standard algorithms for signal subspace estimation (economy size SVD, singular value decomposition) are not suitable since they require an amount of memory which is too large. Furthermore, it is shown that ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) based algorithms can also be employed for parameter estimation from data having hidden rotation invariance structure. As an example an ESPRIT algorithm for angle estimation using circular uniform beam arrays (circular multi-beam antennas) is derived. In the final part of this work a maximum likelihood estimator for the new component of the channel model is developed. Starting with the concept of iterative maximum likelihood estimation, an algorithm is developed having a low computational complexity. The low complexity of the algorithm is achieved by exploiting the Toeplitz-structure of the covariance matrix to estimate. Using the estimator for the (concentrated, dominant, specular-alike) propagation paths and the parametric estimator for the covariance matrix of the process describing the distributed diffuse scattering a joint estimator for all channel parameter is derived (RIMAX). The estimator is a 'maximum likelihood' estimator and uses the genuine SAGE concept to reduce the computational complexity. The estimator provides additional information about the reliability of the estimated channel parameters. This reliability information is used to determine an appropriate model for the observation. Furthermore, the reliability information i.e. the estimate of the covariance matrix of all parameter estimates is also an important parameter estimation result. This information is a prerequisite for further processing and evaluation of the measured channel parameters

    Sensor array processing: localisation of wireless sources

    Get PDF
    In this thesis, various subspace array processing techniques for wireless source localisation are presented and investigated in the following three aspects. First, in the environment of indoor optical wireless communications, the paths of different sources and/or from different reflectors may impinge on the receiver from closely spaced directions with a high probability. In this case, the ranges of the paths, together with their directions, are important especially for isolating the desired source from the interferers. A blind multi-source localisation approach, which can be used as a channel estimator in the receiver of a communication system, is proposed for direction, range, and path gain estimation. Utilising the above channel parameter estimates, two subspace multibeam beamformers are also presented to achieve complete interference cancellation. Second, in applications such as wireless sensor networks and ubiquitous computing, both the location and orientation of an array are important parameters of interest to be estimated. Hence, array localisation and orientation estimation approaches are proposed for two cases. In the first case, a number of sources of known locations are employed to estimate these parameters of a receiver array. In the second case, a receiver array is utilised to estimate these parameters of multiple sources with each one being a transmitter array. Last, when sources operate in the near field of an array, the spherical wave propagation model needs to be considered. A problem associated with such a scenario is source localisation under the wideband assumption, where the wavefront of a baseband signal varies when traversing through the sensors of the array. Two novel approaches with the employment of the subcovariance of the received signal and the rotation of the array reference point are proposed to localise multiple sources under the wideband assumption. Throughout the thesis, computer simulation studies are presented for evaluating the performance of the proposed approaches.Open Acces

    Directional propagation channel estimation and analysis in urban environment with panoramic photography

    Get PDF
    International audienceThis article aims to provide readers with a physical understanding of the propagation channel that is complementary to mathematical channel modeling. It presents an analysis of the directional propagation channel based on radiophotos. Radiophotos are graphical objects where directions of arrival are superimposed on three-dimensional (3D) panoramic photographs.The interaction between electro magnetic waves and the environment is immediately identified with these representations. This paper focuses on the direction of arrival at mobile in an urban macrocell environment. The first radiophoto collection illustrates the major propagation phenomena such as reflection, diffraction, or street canyoning. The second collection illustrates typical propagation channel profiles that are classified according to delay, azimuth, and elevation spread values. The paper also describes an original panorama-based method for estimating noise level in the azimuth–elevation domain
    • …
    corecore