2,835 research outputs found

    Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

    Full text link
    We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables 3D human pose estimation using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall.Comment: 12 pages, Accepted at Eurographics 201

    Estimating Human Movement Using Accelerometers

    Get PDF
    Tato práce je zaměřena na analýzu lidského pohybu, zejména měření úhlu kolena, co je důležité především při procesu rehabilitace u pacientů s protézy kolenního kloubu nebo po operaci. Pro měření IMU - inerciální měřící jednotky od firmy Xsens jsou použité, přičemž pouze data z 3-osého akcelerometru a gyroskopu jsou zahrnuty. Vhodné umístění jednotek je vybráno, jakož i metody pro kalibraci a následný výpočet úhlu ze zaznamenaných dat. Tyhle metody jsou implementovány a experimentálně ověřeny. Experimenty ukazují, že výsledky jsou docela přesné, a toto řešení je použitelné při analýze pacientů například provedením monitorování chůze.This work is aimed at analysis of human movement, especially measurement of knee angle, which is important data for monitoring in process of rehabilitation on patients with knee arthroplasty or after surgery. For measurement IMUs - Inertial Measurement Units from Xsens are used, while only data from 3-axis accelerometer and gyroscope are gathered. Appropriate unit position is chosen, as well as methods for calibration and angle calculation from stored measured data. These methods are implemented and experimentally validated. Experiments shows, that results are pretty accurate and this solution is useful in analysis of patients for example by doing gait analysis.

    Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    Get PDF
    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error)

    Extrinisic Calibration of a Camera-Arm System Through Rotation Identification

    Get PDF
    Determining extrinsic calibration parameters is a necessity in any robotic system composed of actuators and cameras. Once a system is outside the lab environment, parameters must be determined without relying on outside artifacts such as calibration targets. We propose a method that relies on structured motion of an observed arm to recover extrinsic calibration parameters. Our method combines known arm kinematics with observations of conics in the image plane to calculate maximum-likelihood estimates for calibration extrinsics. This method is validated in simulation and tested against a real-world model, yielding results consistent with ruler-based estimates. Our method shows promise for estimating the pose of a camera relative to an articulated arm's end effector without requiring tedious measurements or external artifacts. Index Terms: robotics, hand-eye problem, self-calibration, structure from motio

    An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors

    Get PDF
    Inertial measurement units (IMUs) have been demonstrated to reliably measure human joint angles—an essential quantity in the study of biomechanics. However, most previous literature proposed IMU-based joint angle measurement systems that required manual alignment or prescribed calibration motions. This paper presents a simple, physically-intuitive method for IMU-based measurement of the knee flexion/extension angle in gait without requiring alignment or discrete calibration, based on computationally-efficient and easy-to-implement Principle Component Analysis (PCA). The method is compared against an optical motion capture knee flexion/extension angle modeled through OpenSim. The method is evaluated using both measured and simulated IMU data in an observational study (n = 15) with an absolute root-mean-square-error (RMSE) of 9.24∘ and a zero-mean RMSE of 3.49∘. Variation in error across subjects was found, made emergent by the larger subject population than previous literature considers. Finally, the paper presents an explanatory model of RMSE on IMU mounting location. The observational data suggest that RMSE of the method is a function of thigh IMU perturbation and axis estimation quality. However, the effect size for these parameters is small in comparison to potential gains from improved IMU orientation estimations. Results also highlight the need to set relevant datums from which to interpret joint angles for both truth references and estimated data.National Science Foundation (U.S.) (GRFP)National Science Foundation (U.S.) (IIS-1453141
    corecore