514 research outputs found

    A Survey of Downlink Non-orthogonal Multiple Access for 5G Wireless Communication Networks

    Get PDF
    Accepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsAccepted by ZTE CommunicationsNon-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cellular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier simultaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-input multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential research challenges

    Design and Optimization of Scheduling and Non-orthogonal Multiple Access Algorithms with Imperfect Channel State Information

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising candidate technology for 5G cellular systems. In this paper, design and optimization of scheduling and NOMA algorithms is investigated. First, the impact of power allocation for NOMA systems with round-robin scheduling is analyzed. A statistic model is developed for network performance analysis of joint scheduling of spectrum resource and power for NOMA algorithms. Then, proportional fairness (PF) scheduling for NOMA algorithms is proposed with a two-step approach, with its objectives to ensure low computational complexity, high throughput, and user fairness. In the first step, an optimal power allocation strategy is developed with an objective maximizing weighted sum rate. In the second step, three fast and scalable scheduling and user pairing algorithms with QoS guarantee are proposed, in which only a few user pairs are checked for NOMA multiplex. The algorithms are extended to the cases with imperfect channel state estimation and more than two users being multiplexed over one resource block. Numerical results show that the proposed algorithms are significantly faster and more scalable than the existing algorithms, and can maintain a higher throughput gain than orthogonal multiple access

    Multi-Objective Optimization for Spectrum and Energy Efficiency Tradeoff in IRS-Assisted CRNs with NOMA

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising candidate for the sixth generation wireless communication networks due to its high spectrum efficiency (SE), energy efficiency (EE), and better connectivity. It can be applied in cognitive radio networks (CRNs) to further improve SE and user connectivity. However, the interference caused by spectrum sharing and the utilization of non-orthogonal resources can downgrade the achievable performance. In order to tackle this issue, intelligent reflecting surface (IRS) is exploited in a downlink multiple-input-single-output (MISO) CRN with NOMA. To realize a desirable tradeoff between SE and EE, a multi-objective optimization (MOO) framework is formulated under both the perfect and imperfect channel state information (CSI). An iterative block coordinate descent (BCD)-based algorithm is exploited to optimize the beamforming design and IRS reflection coefficients iteratively under the perfect CSI case. A safe approximation and the S-procedure are used to address the non-convex infinite inequality constraints of the problem under the imperfect CSI case. Simulation results demonstrate that the proposed scheme can achieve a better balance between SE and EE than baseline schemes. Moreover, it is shown that both SE and EE of the proposed algorithm under the imperfect CSI can be significantly improved by exploiting IRS
    • …
    corecore