102 research outputs found

    Evolution Toward 5G Mobile Networks - A Survey on Enabling Technologies

    Get PDF
    In this paper, an extensive review has been carried out on the trends of existing as well as proposed potential enabling technologies that are expected to shape the fifth generation (5G) mobile wireless networks. Based on the classification of the trends, we develop a 5G network architectural evolution framework that comprises three evolutionary directions, namely, (1) radio access network node and performance enabler, (2) network control programming platform, and (3) backhaul network platform and synchronization. In (1), we discuss node classification including low power nodes in emerging machine-type communications, and network capacity enablers, e.g., millimeter wave communications and massive multiple-input multiple-output. In (2), both logically distributed cell/device-centric platforms, and logically centralized conventional/wireless software defined networking control programming approaches are discussed. In (3), backhaul networks and network synchronization are discussed. A comparative analysis for each direction as well as future evolutionary directions and challenges toward 5G networks are discussed. This survey will be helpful for further research exploitations and network operators for a smooth evolution of their existing networks toward 5G networks

    Matching theory for priority-based cell association in the downlink of wireless small cell networks

    Full text link
    The deployment of small cells, overlaid on existing cellular infrastructure, is seen as a key feature in next-generation cellular systems. In this paper, the problem of user association in the downlink of small cell networks (SCNs) is considered. The problem is formulated as a many-to-one matching game in which the users and SCBSs rank one another based on utility functions that account for both the achievable performance, in terms of rate and fairness to cell edge users, as captured by newly proposed priorities. To solve this game, a novel distributed algorithm that can reach a stable matching is proposed. Simulation results show that the proposed approach yields an average utility gain of up to 65% compared to a common association algorithm that is based on received signal strength. Compared to the classical deferred acceptance algorithm, the results also show a 40% utility gain and a more fair utility distribution among the users.Comment: 5 page
    • …
    corecore