647 research outputs found

    Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching

    Full text link
    Caching popular content at the edge of future mobile networks has been widely considered in order to alleviate the impact of the data tsunami on both the access and backhaul networks. A number of interesting techniques have been proposed, including femto-caching and "delayed" or opportunistic cache access. Nevertheless, the majority of these approaches suffer from the rather limited storage capacity of the edge caches, compared to the tremendous and rapidly increasing size of the Internet content catalog. We propose to depart from the assumption of hard cache misses, common in most existing works, and consider "soft" cache misses, where if the original content is not available, an alternative content that is locally cached can be recommended. Given that Internet content consumption is increasingly entertainment-oriented, we believe that a related content could often lead to complete or at least partial user satisfaction, without the need to retrieve the original content over expensive links. In this paper, we formulate the problem of optimal edge caching with soft cache hits, in the context of delayed access, and analyze the expected gains. We then show using synthetic and real datasets of related video contents that promising caching gains could be achieved in practice

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Randomised Geographic Caching and its Applications in Wireless Networks

    Get PDF
    The randomised (or probabilistic) geographic caching is a proactive content placement strategy that has attracted a lot of attention, because it can simplify a great deal cache-management problems at the wireless edge. It diversifies content placement over caches and applies to scenarios where a request can be possibly served by multiple cache memories. Its simplicity and strength is due to randomisation. It allows one to formulate continuous optimisation problems for content placement over large homogeneous geographic areas. These can be solved to optimality by standard convex methods, and can even provide closed-form solutions for specific cases. This way the algorithmic obstacles from NP-hardness are avoided and optimal solutions can be derived with low computational cost. Randomised caching has a large spectrum of applications in real-world wireless problems, including femto-caching, multi-tier networks, device-to-device communications, mobility, mm-wave, security, UAVs, and more. In this chapter we will formally present the main policy with its applications in various wireless scenarios. We will further introduce some very useful extensions related to unequal file-sizes and content placement with neighbourhood dependence
    corecore