703 research outputs found

    Metameric MIMO-OOK transmission scheme using multiple RGB LEDs

    Get PDF
    In this work, we propose a novel visible light communication (VLC) scheme utilizing multiple di erent red green and blue triplets each with a di erent emission spectrum of red, green and blue for mitigating the e ect of interference due to di erent colors using spatial multiplexing. On-o keying modulation is considered and its e ect on light emission in terms of flickering, dimming and color rendering is discussed so as to demonstrate how metameric properties have been considered. At the receiver, multiple photodiodes with color filter-tuned on each transmit light emitting diode (LED) are employed. Three di erent detection mechanisms of color zero forcing, minimum mean square error estimation and minimum mean square error equalization are then proposed. The system performance of the proposed scheme is evaluated both with computer simulations and tests with an Arduino board implementatio

    Design and Analysis of Advanced Free Space Optical Communication Systems

    Get PDF
    Free space optical (FSO) communication has emerged as a viable technology for broadband wireless applications. FSO technology offers the potential of high bandwidth capacity over unlicensed optical wavelengths. On long-range FSO links, atmospheric turbulence causes intensity fluctuations, which degrades links performance. The performance of an optical link can be improved by the use of a time delayed diversity technique, which takes advantage of the fact that the atmospheric path from transmitter to receiver is statistically independent for time intervals beyond the coherence time of the intensity fluctuations. Communications performance is improved because the joint probability of error is less than the probability of error from individual channels. Theoretical analysis and experimental investigation were conducted to assess and characterize the performance of a time delayed diversity FSO system. Two experiments were conducted: inside our laboratory under simulated convective turbulence and inter-building in clear atmospheric turbulence. In both cases, time delayed diversity system is shown to offer a notable performance improvement compared to a non-diversity FSO system, where the signal-to-noise ratio (SNR) performance can gain up to 4.7 dB and the bit error rate (BER) performance is doubled. These experimental studies confirm the effectiveness of a time delayed diversity technique to mitigate turbulence induced fading, and its optimality in a dual diversity scheme. This is the first published report of theoretical and experimental performance characteristics of FSO communication system utilizing time delayed diversity technique. FSO technology has also emerged as a key technology for the development of rapidly deployable and secure communication and surveillance networks. In networking applications, broadcasting capability is frequently required to establish and maintain inter-node communications. One approach to deal with the broadcasting issue in FSO networking is the use of omnidirectional FSO links, which is based on non-directed line-of-sight (LOS) technique. Prototype omnidirectional FSO transceiver had been constructed and their performance investigated. Although omnidirectional FSO links cannot provide the performance of directional ones, the results suggest that they could be used in sensor networks or as alternative for traditional wireless networks, when the use of radio frequency (RF) technology is prohibited

    Sistemas de comunicação por luz visível na segurança rodoviária

    Get PDF
    Doutoramento em MAP-TeleEsta tese apresenta um estudo exploratório sobre sistemas de comunicação por luz visível e as suas aplicações em sistemas de transporte inteligentes como forma a melhorar a segurança nas estradas. Foram desenvolvidos neste trabalho, modelos conceptuais e analíticos adequados à caracterização deste tipo de sistemas. Foi desenvolvido um protótipo de baixo custo, capaz de suportar a disseminação de informação utilizando semáforos. A sua realização carece de um estudo detalhado, nomeadamente: i) foi necessário obter modelos capazes de descrever os padrões de radiação numa área de serviço pré-definida; ii) foi necessário caracterizar o meio de comunicações; iii) foi necessário estudar o comportamento de vários esquemas de modulação de forma a optar pelo mais robusto; finalmente, iv) obter a implementação do sistema baseado em FPGA e componentes discretos. O protótipo implementado foi testado em condições reais. Os resultados alcançados mostram os méritos desta solução, chegando mesmo a encorajar a utilização desta tecnologia em outros cenários de aplicação.This thesis presents a study carried out on the exploration of visible light communication (VLC) for road safety applications in intelligent transportation systems (ITS). We developed conceptual and analytical models for the usage of VLC technologies for human safety. A low cost VLC prototype traffic broadcast system was hardware designed and implemented. In order to realize this prototype a number of exhaustive steps have been designed and implemented. An optimized illumination distribution was achieved in a defined service area from LED-based traffic lights associated with a VLC emitter. A traffic light system set-up was modeled and designed for optimum performance. The optical wireless channel was characterized and examined. Depending on the characteristics of the channel and specific applications, a robust modulation technique based on direct sequence spread spectrum using sequence inverse keying (DSSS SIK) was analyzed, developed, and implemented. The complete prototype VLC transceiver system was then implemented with field programmable gate arrays (FPGA) and discrete components. Simulation and experimental validation of system was performed in different scenarios and environments. The obtained results have shown the merits of our approach. A number of findings was experienced which are illustrated at the end. These observations would enhance and encourage potential research in the area and optimize performance of VLC systems for a number of interesting applications in future. A summary of future research challenges is presented at the end

    Optimal Power Allocation for Integrated Visible Light Positioning and Communication System with a Single LED-Lamp

    Get PDF
    In this paper, we investigate an integrated visible light positioning and communication (VLPC) system with a single LED-lamp. First, by leveraging the fact that the VLC channel model is a function of the receiver's location, we propose a system model that estimates the channel state information (CSI) based on the positioning information without transmitting pilot sequences. Second, we derive the Cramer-Rao lower bound (CRLB) on the positioning error variance and a lower bound on the achievable rate with on-off keying modulation. Third, based on the derived performance metrics, we optimize the power allocation to minimize the CRLB, while satisfying the rate outage probability constraint. To tackle this non-convex optimization problem, we apply the worst-case distribution of the Conditional Value-at-Risk (CVaR) and the block coordinate descent (BCD) methods to obtain the feasible solutions. Finally, the effects of critical system parameters, such as outage probability, rate threshold, total power threshold, are revealed by numerical results.Comment: 13 pages, 14 figures, accepted by IEEE Transactions on Communication

    Visible light positioning systems under imperfect synchronization and signal-dependant noise

    Get PDF
    Optical Wireless Communication (OWC) is an enabling technology for sixth-generation (6G) and beyond communication networks. Visible light communication (VLC) is a crucial branch of OWC technology expected to meet 6G communication system requirements. The VLC system can facilitate multiple functionalities simultaneously including illumination, ultra-high data rate communications, positioning such as location and navigation services. In VLC systems, a light-emitting diode (LED) functions as a transmitter. A photodetector or imaging sensor acts as a receiver and the visible light is used as the transmission medium. Researchers have shown a great deal of interest in VLC based positing and localization techniques, as visible light positioning (VLP) systems have shown better localization accuracy than radio frequency (RF) based positioning or global positioning system (GPS). This thesis considers the problem of position estimation accuracy in VLC systems in the presence of signal-dependent shot noise (SDSN). We investigate distance and 3D position estimation approaches in different scenarios, focusing on error estimation performance bounds. Additionally, this work attempts to resolve the synchronization problem found in VLP systems
    corecore