1,568 research outputs found

    Joint Trajectory and Resource Allocation Design for Energy-Efficient Secure UAV Communication Systems

    Full text link
    In this paper, we study the trajectory and resource allocation design for downlink energy-efficient secure unmanned aerial vehicle (UAV) communication systems, where an information UAV assisted by a multi-antenna jammer UAV serves multiple ground users in the existence of multiple ground eavesdroppers. The resource allocation strategy and the trajectory of the information UAV, and the jamming policy of the jammer UAV are jointly optimized for maximizing the system energy efficiency. The joint design is formulated as a non-convex optimization problem taking into account the quality of service (QoS) requirement, the security constraint, and the imperfect channel state information (CSI) of the eavesdroppers. The formulated problem is generally intractable. As a compromise approach, the problem is divided into two subproblems which facilitates the design of a low-complexity suboptimal algorithm based on alternating optimization approach. Simulation results illustrate that the proposed algorithm converges within a small number of iterations and demonstrate some interesting insights: (1) the introduction of a jammer UAV facilitates a highly flexible trajectory design of the information UAV which is critical to improving the system energy efficiency; (2) by exploiting the spatial degrees of freedom brought by the multi-antenna jammer UAV, our proposed design can focus the artificial noise on eavesdroppers offering a strong security mean to the system.Comment: Accepted by IEEE Transactions on Communications, 18 pages, 12 figure

    Energy-Efficient Resource Allocation for Secure UAV Communication Systems

    Full text link
    In this paper, we study the resource allocation and trajectory design for energy-efficient secure unmanned aerial vehicle (UAV) communication systems where a UAV base station serves multiple legitimate ground users in the existence of a potential eavesdropper. We aim to maximize the energy efficiency of the UAV by jointly optimizing its transmit power, user scheduling, trajectory, and velocity. The design is formulated as a non-convex optimization problem taking into account the maximum tolerable signal-to-noise ratio (SNR) leakage, the minimum data rate requirement of each user, and the location uncertainty of the eavesdropper. An iterative algorithm is proposed to obtain an efficient suboptimal solution. Simulation results demonstrate that the proposed algorithm can achieve a significant improvement of the system energy efficiency while satisfying communication security constraint, compared to some simple scheme adopting straight flight trajectory with a constant speed.Comment: 9 pages, 4 figures. This paper has been accepted for presentation at IEEE WCNC 201

    Robust Trajectory and Resource Allocation Design for Secure UAV-aided Communications

    Full text link
    This paper aims to enhance the physical layer security against potential internal eavesdroppings by exploiting the maneuverability of an unmanned aerial vehicle (UAV). We consider a scenario where two receivers with different security clearance levels require to be served by a legitimate transmitter with the aid of the UAV. We jointly design the trajectory and resource allocation to maximize the accumulated system confidential data rate. The design is formulated as a mixed-integer non-convex optimization problem which takes into account the partial position information of a potential eavesdropper. To circumvent the problem non-convexity, a series of transformations and approximations are proposed which facilitates the design of a computationally efficient suboptimal solution. Simulation results are presented to provide important system design insights and demonstrate the advantages brought by the robust joint design for enhancing the physical layer security.Comment: 6 pages, 3 figures. This work has been accepted by IEEE ICC 201

    Multiuser MISO UAV Communications in Uncertain Environments with No-fly Zones: Robust Trajectory and Resource Allocation Design

    Full text link
    In this paper, we investigate robust resource allocation algorithm design for multiuser downlink multiple-input single-output (MISO) unmanned aerial vehicle (UAV) communication systems, where we account for the various uncertainties that are unavoidable in such systems and, if left unattended, may severely degrade system performance. We jointly optimize the two-dimensional (2-D) trajectory and the transmit beamforming vector of the UAV for minimization of the total power consumption. The algorithm design is formulated as a non-convex optimization problem taking into account the imperfect knowledge of the angle of departure (AoD) caused by UAV jittering, user location uncertainty, wind speed uncertainty, and polygonal no-fly zones (NFZs). Despite the non-convexity of the optimization problem, we solve it optimally by employing monotonic optimization theory and semidefinite programming relaxation which yields the optimal 2-D trajectory and beamforming policy. Since the developed optimal resource allocation algorithm entails a high computational complexity, we also propose a suboptimal iterative low-complexity scheme based on successive convex approximation to strike a balance between optimality and computational complexity. Our simulation results reveal not only the significant power savings enabled by the proposed algorithms compared to two baseline schemes, but also confirm their robustness with respect to UAV jittering, wind speed uncertainty, and user location uncertainty. Moreover, our results unveil that the joint presence of wind speed uncertainty and NFZs has a considerable impact on the UAV trajectory. Nevertheless, by counteracting the wind speed uncertainty with the proposed robust design, we can simultaneously minimize the total UAV power consumption and ensure a secure trajectory that does not trespass any NFZ.Comment: 30 pages, 11 figures, submitted to TCO

    3D Trajectory Optimization for Secure UAV Communication with CoMP Reception

    Full text link
    This paper studies a secrecy unmanned aerial vehicle (UAV) communication system with coordinated multi-point (CoMP) reception, in which one UAV sends confidential messages to a set of distributed ground nodes (GNs) that can cooperate in signal detection, in the presence of several colluding suspicious eavesdroppers. Different from prior works considering the two-dimensional (2D) horizontal trajectory design in the non-CoMP scenario, this paper additionally exploits the UAV's vertical trajectory (or altitude) control for further improving the secrecy communication performance with CoMP. In particular, we jointly optimize the three dimensional (3D) trajectory and transmit power allocation of the UAV to maximize the average secrecy rate at GNs over a particular flight period, subject to the UAV's maximum flight speed and maximum transmit power constraints. To solve the non-convex optimization problem, we propose an alternating-optimization-based approach, which optimizes the transmit power allocation and trajectory design in an alternating manner, by convex optimization and successive convex approximation (SCA), respectively. Numerical results show that in the scenario with CoMP reception, our proposed 3D trajectory optimization significantly outperforms the conventional 2D horizontal trajectory design, by exploiting the additional degree of freedom in vertical trajectory.Comment: 6 pages, 5 figures, submitted to IEEE Conference for possible publicatio

    Resource Allocation for Solar Powered UAV Communication Systems

    Full text link
    In this paper, we investigate the resource allocation design for multicarrier (MC) systems employing a solar powered unmanned aerial vehicle (UAV) for providing communication services to multiple downlink users. We study the joint design of the three-dimensional positioning of the UAV and the power and subcarrier allocation for maximization of the system sum throughput. The algorithm design is formulated as a mixed-integer non-convex optimization problem, which requires a prohibitive computational complexity for obtaining the globally optimal solution. Therefore, a low-complexity suboptimal iterative solution based on successive convex approximation is proposed. Simulation results confirm that the proposed suboptimal algorithm achieves a substantially higher system sum throughput compared to several baseline schemes.Comment: Invited paper for Special Session: UAV Communications and Networks, in SPAWC 2018, Greec

    Computation Rate Maximization in UAV-Enabled Wireless Powered Mobile-Edge Computing Systems

    Full text link
    Mobile edge computing (MEC) and wireless power transfer (WPT) are two promising techniques to enhance the computation capability and to prolong the operational time of low-power wireless devices that are ubiquitous in Internet of Things. However, the computation performance and the harvested energy are significantly impacted by the severe propagation loss. In order to address this issue, an unmanned aerial vehicle (UAV)-enabled MEC wireless powered system is studied in this paper. The computation rate maximization problems in a UAV-enabled MEC wireless powered system are investigated under both partial and binary computation offloading modes, subject to the energy harvesting causal constraint and the UAV's speed constraint. These problems are non-convex and challenging to solve. A two-stage algorithm and a three-stage alternative algorithm are respectively proposed for solving the formulated problems. The closed-form expressions for the optimal central processing unit frequencies, user offloading time, and user transmit power are derived. The optimal selection scheme on whether users choose to locally compute or offload computation tasks is proposed for the binary computation offloading mode. Simulation results show that our proposed resource allocation schemes outperforms other benchmark schemes. The results also demonstrate that the proposed schemes converge fast and have low computational complexity.Comment: This paper has been accepted by IEEE JSA

    Improving PHY-Security of UAV-Enabled Transmission with Wireless Energy Harvesting: Robust Trajectory Design and Communications Resource Allocation

    Full text link
    In this paper, we consider an unmanned aerial vehicle (UAV) assisted communications system, including two cooperative UAVs, a wireless-powered ground destination node leveraging simultaneous wireless information and power transfer (SWIPT) technique, and a terrestrial passive eavesdropper. One UAV delivers confidential information to destination and the other sends jamming signals to against eavesdropping and assist destination with energy harvesting. Assuming UAVs have partial information about eavesdropper's location, we propose two transmission schemes: friendly UAV jamming (FUJ) and Gaussian jamming transmission (GJT) for the cases when jamming signals are known and unknown a priori at destination, respectively. Then, we formulate an average secrecy rate maximization problem to jointly optimize the transmission power and trajectory of UAVs, and the power splitting ratio of destination. Being non-convex and hence difficult to solve the formulated problem, we propose a computationally efficient iterative algorithm based on block coordinate descent and successive convex approximation to obtain a suboptimal solution. Finally, numerical results are provided to substantiate the effectiveness of our proposed multiple-UAV schemes, compared to other existing benchmarks. Specifically, we find that the FUJ demonstrates significant secrecy performance improvement in terms of the optimal instantaneous and average secrecy rate compared to the GJT and the conventional single-UAV counterpart.Comment: This paper has been accepted by IEEE Transactions on Vehicular Technolog

    UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design

    Full text link
    With the emergence of diverse mobile applications (such as augmented reality), the quality of experience of mobile users is greatly limited by their computation capacity and finite battery lifetime. Mobile edge computing (MEC) and wireless power transfer are promising to address this issue. However, these two techniques are susceptible to propagation delay and loss. Motivated by the chance of short-distance line-of-sight achieved by leveraging unmanned aerial vehicle (UAV) communications, an UAV-enabled wireless powered MEC system is studied. A power minimization problem is formulated subject to the constraints on the number of the computation bits and energy harvesting causality. The problem is non-convex and challenging to tackle. An alternative optimization algorithm is proposed based on sequential convex optimization. Simulation results show that our proposed design is superior to other benchmark schemes and the proposed algorithm is efficient in terms of the convergence.Comment: This paper has been accepted by IEEE ICC 201

    Robust Resource Allocation for UAV Systems with UAV Jittering and User Location Uncertainty

    Full text link
    In this paper, we investigate resource allocation algorithm design for multiuser unmanned aerial vehicle (UAV) communication systems in the presence of UAV jittering and user location uncertainty. In particular, we jointly optimize the two-dimensional position and the downlink beamformer of a fixed-altitude UAV for minimization of the total UAV transmit power. The problem formulation takes into account the quality-of-service requirements of the users, the imperfect knowledge of the antenna array response (AAR) caused by UAV jittering, and the user location uncertainty. Despite the non-convexity of the resulting problem, we solve the problem optimally employing a series of transformations and semidefinite programming relaxation. Our simulation results reveal the dramatic power savings enabled by the proposed robust scheme compared to two baseline schemes. Besides, the robustness of the proposed scheme with respect to imperfect AAR knowledge and user location uncertainty at the UAV is also confirmed.Comment: 6 pages, 4 figures, accepted by Proc. IEEE GLOBECOM 2018 Workshop
    • …
    corecore