2,319 research outputs found

    Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

    Full text link
    Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobile users in executing computation-intensive tasks via task offloading. The problem of Joint Task Offloading and Resource Allocation (JTORA) is studied in order to maximize the users' task offloading gains, which is measured by the reduction in task completion time and energy consumption. The considered problem is formulated as a Mixed Integer Non-linear Program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the NP-hardness of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, our approach is to decompose the original problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a suboptimal solution in polynomial time. Numerical simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches

    Service Capacity Enhanced Task Offloading and Resource Allocation in Multi-Server Edge Computing Environment

    Full text link
    An edge computing environment features multiple edge servers and multiple service clients. In this environment, mobile service providers can offload client-side computation tasks from service clients' devices onto edge servers to reduce service latency and power consumption experienced by the clients. A critical issue that has yet to be properly addressed is how to allocate edge computing resources to achieve two optimization objectives: 1) minimize the service cost measured by the service latency and the power consumption experienced by service clients; and 2) maximize the service capacity measured by the number of service clients that can offload their computation tasks in the long term. This paper formulates this long-term problem as a stochastic optimization problem and solves it with an online algorithm based on Lyapunov optimization. This NP-hard problem is decomposed into three sub-problems, which are then solved with a suite of techniques. The experimental results show that our approach significantly outperforms two baseline approaches.Comment: This paper has been accepted by Early Submission Phase of ICWS201

    Decentralized Computation Offloading and Resource Allocation in Heterogeneous Networks with Mobile Edge Computing

    Full text link
    We consider a heterogeneous network with mobile edge computing, where a user can offload its computation to one among multiple servers. In particular, we minimize the system-wide computation overhead by jointly optimizing the individual computation decisions, transmit power of the users, and computation resource at the servers. The crux of the problem lies in the combinatorial nature of multi-user offloading decisions, the complexity of the optimization objective, and the existence of inter-cell interference. Then, we decompose the underlying problem into two subproblems: i) the offloading decision, which includes two phases of user association and subchannel assignment, and ii) joint resource allocation, which can be further decomposed into the problems of transmit power and computation resource allocation. To enable distributed computation offloading, we sequentially apply a many-to-one matching game for user association and a one-to-one matching game for subchannel assignment. Moreover, the transmit power of offloading users is found using a bisection method with approximate inter-cell interference, and the computation resources allocated to offloading users is achieved via the duality approach. The proposed algorithm is shown to converge and is stable. Finally, we provide simulations to validate the performance of the proposed algorithm as well as comparisons with the existing frameworks.Comment: Submitted to IEEE Journa

    Joint Offloading and Resource Allocation in Vehicular Edge Computing and Networks

    Full text link
    The emergence of computation intensive on-vehicle applications poses a significant challenge to provide the required computation capacity and maintain high performance. Vehicular Edge Computing (VEC) is a new computing paradigm with a high potential to improve vehicular services by offloading computation-intensive tasks to the VEC servers. Nevertheless, as the computation resource of each VEC server is limited, offloading may not be efficient if all vehicles select the same VEC server to offload their tasks. To address this problem, in this paper, we propose offloading with resource allocation. We incorporate the communication and computation to derive the task processing delay. We formulate the problem as a system utility maximization problem, and then develop a low-complexity algorithm to jointly optimize offloading decision and resource allocation. Numerical results demonstrate the superior performance of our Joint Optimization of Selection and Computation (JOSC) algorithm compared to state of the art solutions

    Energy-Efficient Joint Offloading and Wireless Resource Allocation Strategy in Multi-MEC Server Systems

    Full text link
    Mobile edge computing (MEC) is an emerging paradigm that mobile devices can offload the computation-intensive or latency-critical tasks to the nearby MEC servers, so as to save energy and extend battery life. Unlike the cloud server, MEC server is a small-scale data center deployed at a wireless access point, thus it is highly sensitive to both radio and computing resource. In this paper, we consider an Orthogonal Frequency-Division Multiplexing Access (OFDMA) based multi-user and multi-MEC-server system, where the task offloading strategies and wireless resources allocation are jointly investigated. Aiming at minimizing the total energy consumption, we propose the joint offloading and resource allocation strategy for latency-critical applications. Through the bi-level optimization approach, the original NP-hard problem is decoupled into the lower-level problem seeking for the allocation of power and subcarrier and the upper-level task offloading problem. Simulation results show that the proposed algorithm achieves excellent performance in energy saving and successful offloading probability (SOP) in comparison with conventional schemes.Comment: 6 pages, 5 figures, to appear in IEEE ICC 2018, May 20-2

    Optimal Task Assignment and Power Allocation for NOMA Mobile-Edge Computing Networks

    Full text link
    Mobile edge computing (MEC) can enhance the computing capability of mobile devices, and non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two technologies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task completion time minimization in NOMA multiuser MEC networks, where multiple users can offload their tasks simultaneously via the same frequency band. We adopt the \emph{partial} offloading, in which each user can partition its computation task into offloading computing and locally computing parts. We aim to minimize the maximum task latency among users by optimizing their tasks partition ratios and offloading transmit power. By considering the energy consumption and transmitted power limitation of each user, the formulated problem is quasi-convex. Thus, a bisection search (BSS) iterative algorithm is proposed to obtain the minimum task completion time. To reduce the complexity of the BSS algorithm and evaluate its optimality, we further derive the closed-form expressions of the optimal task partition ratio and offloading power for two-user NOMA MEC networks based on the analysed results. Simulation results demonstrate the convergence and optimality of the proposed a BSS algorithm and the effectiveness of the proposed optimal derivation

    Mobile Edge Computation Offloading Using Game Theory and Reinforcement Learning

    Full text link
    Due to the ever-increasing popularity of resource-hungry and delay-constrained mobile applications, the computation and storage capabilities of remote cloud has partially migrated towards the mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC). While MEC servers enjoy the close proximity to the end-users to provide services at reduced latency and lower energy costs, they suffer from limitations in computational and radio resources, which calls for fair efficient resource management in the MEC servers. The problem is however challenging due to the ultra-high density, distributed nature, and intrinsic randomness of next generation wireless networks. In this article, we focus on the application of game theory and reinforcement learning for efficient distributed resource management in MEC, in particular, for computation offloading. We briefly review the cutting-edge research and discuss future challenges. Furthermore, we develop a game-theoretical model for energy-efficient distributed edge server activation and study several learning techniques. Numerical results are provided to illustrate the performance of these distributed learning techniques. Also, open research issues in the context of resource management in MEC servers are discussed

    Decentralized Computation Offloading for Multi-User Mobile Edge Computing: A Deep Reinforcement Learning Approach

    Full text link
    Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. Nevertheless, by considering a MEC system consisting of multiple mobile users with stochastic task arrivals and wireless channels in this paper, the design of computation offloading policies is challenging to minimize the long-term average computation cost in terms of power consumption and buffering delay. A deep reinforcement learning (DRL) based decentralized dynamic computation offloading strategy is investigated to build a scalable MEC system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn efficient computation offloading policies independently at each mobile user. Thus, powers of both local execution and task offloading can be adaptively allocated by the learned policies from each user's local observation of the MEC system. Numerical results are illustrated to demonstrate that efficient policies can be learned at each user, and performance of the proposed DDPG based decentralized strategy outperforms the conventional deep Q-network (DQN) based discrete power control strategy and some other greedy strategies with reduced computation cost. Besides, the power-delay tradeoff is also analyzed for both the DDPG based and DQN based strategies

    Optimal Task Offloading and Resource Allocation in Mobile-Edge Computing with Inter-user Task Dependency

    Full text link
    Mobile-edge computing (MEC) has recently emerged as a cost-effective paradigm to enhance the computing capability of hardware-constrained wireless devices (WDs). In this paper, we first consider a two-user MEC network, where each WD has a sequence of tasks to execute. In particular, we consider task dependency between the two WDs, where the input of a task at one WD requires the final task output at the other WD. Under the considered task-dependency model, we study the optimal task offloading policy and resource allocation (e.g., on offloading transmit power and local CPU frequencies) that minimize the weighted sum of the WDs' energy consumption and task execution time. The problem is challenging due to the combinatorial nature of the offloading decisions among all tasks and the strong coupling with resource allocation. To tackle this problem, we first assume that the offloading decisions are given and derive the closed-form expressions of the optimal offloading transmit power and local CPU frequencies. Then, an efficient bi-section search method is proposed to obtain the optimal solutions. Furthermore, we prove that the optimal offloading decisions follow an one-climb policy, based on which a reduced-complexity Gibbs Sampling algorithm is proposed to obtain the optimal offloading decisions. We then extend the investigation to a general multi-user scenario, where the input of a task at one WD requires the final task outputs from multiple other WDs. Numerical results show that the proposed method can significantly outperform the other representative benchmarks and efficiently achieve low complexity with respect to the call graph size.Comment: This paper has been accepted for publication in IEEE Transactions on Wireless Communication

    Optimized Computation Offloading Performance in Virtual Edge Computing Systems via Deep Reinforcement Learning

    Full text link
    To improve the quality of computation experience for mobile devices, mobile-edge computing (MEC) is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network (RAN), which supports both traditional communication and MEC services. Nevertheless, the design of computation offloading policies for a virtual MEC system remains challenging. Specifically, whether to execute a computation task at the mobile device or to offload it for MEC server execution should adapt to the time-varying network dynamics. In this paper, we consider MEC for a representative mobile user in an ultra-dense sliced RAN, where multiple base stations (BSs) are available to be selected for computation offloading. The problem of solving an optimal computation offloading policy is modelled as a Markov decision process, where our objective is to maximize the long-term utility performance whereby an offloading decision is made based on the task queue state, the energy queue state as well as the channel qualities between MU and BSs. To break the curse of high dimensionality in state space, we first propose a double deep Q-network (DQN) based strategic computation offloading algorithm to learn the optimal policy without knowing a priori knowledge of network dynamics. Then motivated by the additive structure of the utility function, a Q-function decomposition technique is combined with the double DQN, which leads to novel learning algorithm for the solving of stochastic computation offloading. Numerical experiments show that our proposed learning algorithms achieve a significant improvement in computation offloading performance compared with the baseline policies
    • …
    corecore