1,166 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Decentralized Dynamic Hop Selection and Power Control in Cognitive Multi-hop Relay Systems

    Full text link
    In this paper, we consider a cognitive multi-hop relay secondary user (SU) system sharing the spectrum with some primary users (PU). The transmit power as well as the hop selection of the cognitive relays can be dynamically adapted according to the local (and causal) knowledge of the instantaneous channel state information (CSI) in the multi-hop SU system. We shall determine a low complexity, decentralized algorithm to maximize the average end-to-end throughput of the SU system with dynamic spatial reuse. The problem is challenging due to the decentralized requirement as well as the causality constraint on the knowledge of CSI. Furthermore, the problem belongs to the class of stochastic Network Utility Maximization (NUM) problems which is quite challenging. We exploit the time-scale difference between the PU activity and the CSI fluctuations and decompose the problem into a master problem and subproblems. We derive an asymptotically optimal low complexity solution using divide-and-conquer and illustrate that significant performance gain can be obtained through dynamic hop selection and power control. The worst case complexity and memory requirement of the proposed algorithm is O(M^2) and O(M^3) respectively, where MM is the number of SUs

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Performance of cluster-based cognitive multihop networks under joint impact of hardware noises and non-identical primary co-channel interference

    Get PDF
    In this paper, we evaluate outage probability (OP) of a cluster-based multi-hop protocol operating on an underlay cognitive radio (CR) mode. The primary network consists of multiple independent transmit/receive pairs, and the primary transmitters seriously cause co-channel interference (CCI) to the secondary receivers. To improve the outage performance for the secondary network under the joint impact of the CCI and hardware imperfection, we employ the best relay selection at each hop. Moreover, the destination is equipped with multiple antennas and uses the selection combining (SC) technique to enhance the reliability of the data transmission at the last hop. For performance evaluation, we first derive an exact formula of OP for the primary network which is used to calculate the transmit power of the secondary transmitters. Next, an exact closed-form expression of the end-to-end OP for the secondary network is derived over Rayleigh fading channels. We then perform Monte-Carlo simulations to validate the derivations. The results present that the CCI caused by the primary operations significantly impacts on the outage performance of the secondary network

    Energy Aware Multipath Routing Protocol for Cognitive Radio Ad Hoc Networks

    Get PDF
    Cognitive radio networks (CRNs) emerged as a paradigm to solve the problem of limited spectrum availability and the spectrum underutilization in wireless networks by opportunistically exploiting portions of the spectrum temporarily vacated by licensed primary users (PUs). Routing in CRNs is a challenging problem due to the PU activities and mobility. On the other hand, energy aware routing is very important in energy-constraint CRNs. In addition, it is crucial that CR users efficiently exchange data with each other before the appearance of PUs. To design a robust routing scheme for mobile CR ad hoc networks (CRANs), the constraints on residual energy of each CR user, reliability, and the protection of PUs must additionally be taken into account. Moreover, multipath routing has great potential for improving the end-to-end performance of ad hoc networks. Considering all these evidences, in this paper, we propose an energy aware on-demand multipath routing (EOMR) protocol for mobile CRANs to ensure the robustness and to improve the throughput. The proposed routing scheme involves energy efficient multipath route selection and spectrum allocation jointly. The simulation results show that our approach improves the overall performance of the network
    corecore