115,429 research outputs found

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals

    Full text link
    An electroencephalography (EEG) based Brain Computer Interface (BCI) enables people to communicate with the outside world by interpreting the EEG signals of their brains to interact with devices such as wheelchairs and intelligent robots. More specifically, motor imagery EEG (MI-EEG), which reflects a subjects active intent, is attracting increasing attention for a variety of BCI applications. Accurate classification of MI-EEG signals while essential for effective operation of BCI systems, is challenging due to the significant noise inherent in the signals and the lack of informative correlation between the signals and brain activities. In this paper, we propose a novel deep neural network based learning framework that affords perceptive insights into the relationship between the MI-EEG data and brain activities. We design a joint convolutional recurrent neural network that simultaneously learns robust high-level feature presentations through low-dimensional dense embeddings from raw MI-EEG signals. We also employ an Autoencoder layer to eliminate various artifacts such as background activities. The proposed approach has been evaluated extensively on a large- scale public MI-EEG dataset and a limited but easy-to-deploy dataset collected in our lab. The results show that our approach outperforms a series of baselines and the competitive state-of-the- art methods, yielding a classification accuracy of 95.53%. The applicability of our proposed approach is further demonstrated with a practical BCI system for typing.Comment: 10 page

    CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms

    Get PDF
    How to optimally dispatch orders to vehicles and how to tradeoff between immediate and future returns are fundamental questions for a typical ride-hailing platform. We model ride-hailing as a large-scale parallel ranking problem and study the joint decision-making task of order dispatching and fleet management in online ride-hailing platforms. This task brings unique challenges in the following four aspects. First, to facilitate a huge number of vehicles to act and learn efficiently and robustly, we treat each region cell as an agent and build a multi-agent reinforcement learning framework. Second, to coordinate the agents from different regions to achieve long-term benefits, we leverage the geographical hierarchy of the region grids to perform hierarchical reinforcement learning. Third, to deal with the heterogeneous and variant action space for joint order dispatching and fleet management, we design the action as the ranking weight vector to rank and select the specific order or the fleet management destination in a unified formulation. Fourth, to achieve the multi-scale ride-hailing platform, we conduct the decision-making process in a hierarchical way where a multi-head attention mechanism is utilized to incorporate the impacts of neighbor agents and capture the key agent in each scale. The whole novel framework is named as CoRide. Extensive experiments based on multiple cities real-world data as well as analytic synthetic data demonstrate that CoRide provides superior performance in terms of platform revenue and user experience in the task of city-wide hybrid order dispatching and fleet management over strong baselines.Comment: CIKM 201

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches
    • …
    corecore