6,523 research outputs found

    Interference Mitigation for Cognitive Radio MIMO Systems Based on Practical Precoding

    Full text link
    In this paper, we propose two subspace-projection-based precoding schemes, namely, full-projection (FP)- and partial-projection (PP)-based precoding, for a cognitive radio multiple-input multiple-output (CR-MIMO) network to mitigate its interference to a primary time-division-duplexing (TDD) system. The proposed precoding schemes are capable of estimating interference channels between CR and primary networks, and incorporating the interference from the primary to the CR system into CR precoding via a novel sensing approach. Then, the CR performance and resulting interference of the proposed precoding schemes are analyzed and evaluated. By fully projecting the CR transmission onto a null space of the interference channels, the FP-based precoding scheme can effectively avoid interfering the primary system with boosted CR throughput. While, the PP-based scheme is able to further improve the CR throughput by partially projecting its transmission onto the null space.Comment: 12 pages, 4 figures, submitted to the IEEE Trans. Wireless Communications in April 201

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    Joint Wireless Information and Energy Transfer in a K-User MIMO Interference Channel

    Full text link
    Recently, joint wireless information and energy transfer (JWIET) methods have been proposed to relieve the battery limitation of wireless devices. However, the JWIET in a general K-user MIMO interference channel (IFC) has been unexplored so far. In this paper, we investigate for the first time the JWIET in K-user MIMO IFC, in which receivers either decode the incoming information data (information decoding, ID) or harvest the RF energy (energy harvesting, EH). In the K-user IFC, we consider three different scenarios according to the receiver mode -- i) multiple EH receivers and a single ID receiver, ii) multiple IDs and a single EH, and iii) multiple IDs and multiple EHs. For all scenarios, we have found a common necessary condition of the optimal transmission strategy and, accordingly, developed the transmission strategy that satisfies the common necessary condition, in which all the transmitters transferring energy exploit a rank-one energy beamforming. Furthermore, we have also proposed an iterative algorithm to optimize the covariance matrices of the transmitters that transfer information and the powers of the energy beamforming transmitters simultaneously, and identified the corresponding achievable rate-energy tradeoff region. Finally, we have shown that by selecting EH receivers according to their signal-to-leakage-and-harvested energy-ratio (SLER), we can improve the achievable rate-energy region further.Comment: arXiv admin note: text overlap with arXiv:1303.169

    System Concepts for Bi- and Multi-Static SAR Missions

    Get PDF
    The performance and capabilities of bi- and multistatic spaceborne synthetic aperture radar (SAR) are analyzed. Such systems can be optimized for a broad range of applications like frequent monitoring, wide swath imaging, single-pass cross-track interferometry, along-track interferometry, resolution enhancement or radar tomography. Further potentials arises from digital beamforming on receive, which allows to gather additional information about the direction of the scattered radar echoes. This directional information can be used to suppress interferences, to improve geometric and radiometric resolution, or to increase the unambiguous swath width. Furthermore, a coherent combination of multiple receiver signals will allow for a suppression of azimuth ambiguities. For this, a reconstruction algorithm is derived, which enables a recovery of the unambiguous Doppler spectrum also in case of non-optimum receiver aperture displacements leading to a non-uniform sampling of the SAR signal. This algorithm has also a great potential for systems relying on the displaced phase center (DPC) technique, like the high resolution wide swath (HRWS) SAR or the split antenna approach in the TerraSAR-X and Radarsat II satellites
    • 

    corecore