11,870 research outputs found

    Joint space-frequency block codes and signal alignment for heterogeneous networks

    Get PDF
    In this paper, we propose a new diversity-oriented space-frequency block codes (SFBC) and signal alignment (SA) enabled physical network coding (PNC) method for the uplink of heterogeneous networks. The proposed joint Dual-SFBC with SA-PNC design substantially reduces interference and enables connecting a larger number of users when compared with methods adopting interference alignment (IA) or PNC. The main motivation behind the dual SFBC and SA-PNC design is that it allows the efficient coexistence of macro and small cells without any inter-system channel information requirements. Numerical results also verify that the proposed method outperforms the existing SA-PNC static method without any additional information exchange requirement between the two systems while achieving the main benefits of IA and SA-PNC coordinated methods recently proposed.publishe

    Physical-Layer Transmission Cooperative Strategies for Heterogeneous Networks

    Get PDF
    The deployment of small cells within the boundaries of a macro-cell is considered to be an effective solution to cope with the current trend of higher data rates and improved system capacity. In the current heterogeneous configuration with the mass deployment of small cells, it is preferred that these two cell types coexist over the same spectrum, because acquiring additional spectrum licenses for small cells is difficult and expensive. However, the coexistence leads to cross-tier/inter-system interference. In this context, this contribution investigates interference alignment (IA) methods in order to mitigate the interference of macro-cell base station towards the small cell user terminals. More specifically, we design a diversity-oriented interference alignment scheme with space-frequency block codes (SFBC). The main motivation for joint interference alignment with SFBC is to allow the coexistence of two systems under minor inter-system information exchange. The small cells just need to know what space-frequency block code is used by the macro-cell system and no inter-system channels need to be exchanged, contrarily to other schemes recently proposed. Numerical results show that the proposed method achieves a performance close to the case where full-cooperation between the tiers is allowed

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Implementação e avaliação no system generator de um sistema cooperativo para os futuros sistemas 5G

    Get PDF
    With the arrival of 5G it is expected the proliferation of services in the different fields such as healthcare, utility applications, industrial automation, 4K streaming, that the former networks can not provide. Additionally, the total number of wireless communication devices will escalate in such a manner that the already scarce available frequency bandwidth won’t be enough to pack the intended objectives. Cisco’s Annual Internet Report from 2018 predicts that by 2023 there will be nearly 30 billion devices capable of wireless communication. Due to the exponential expiation of both services and devices, the challenges upon both network data capacity and efficient radio resourse use will be greater than ever, thus the urgency for solutions is grand. Both the capacity for wireless communications and spectral efficiency are related to cell size and its users proximity to the access point. Thus, shortening the distance between the transmitter and the receiver improves both aspects of the network. This concept is what motivates the implementation of heterogeneous networks, HetNets, that are composed of many different small-cells, SCs, overlaid across the same coexisting area of a conventional macro-cell, shortening the distance between the cell users and its access point transceivers, granting a better coverage and higher data rates. However, the HetNets potential does not come without any challenges, as these networks suffer considerably from communication interference between cells. Although some interference management algorithms that allow coexistence between cells have been proposed in recent years, most of them were evaluated by software simulations and not implemented in real-time platforms. Therefore, this master thesis aims to give the first step on the implementation and evaluation of an interference mitigation technique in hardware. Specifically, it is assumed a downlink scenario composed by a macro-cell base station, a macro-cell primary user and a small cell user, with the aim of implementing an algorithm that eliminates the downlink interference that the base station may cause to the secondary users. The study was carried out using the System Generator DSP tool, which is a tool that generates code for hardware from schematics created in it. This tool also offers a wide range of blocks that help the creation, and fundamentally, the simulation and study of the system to be implemented, before being translated into hardware. The results obtained in this work are a faithful representation of the behavior of the implemented system, which can be used for a future application for FPGA.Com a chegada do 5G, espera-se a proliferação de serviços nas mais diversas áreas tal como assistência médica, automação industrial, transmissão em 4k, que não eram possíveis nas redes das gerações anteriores. Além deste fenómeno, o número total de dispositivos capazes de conexões wireless aumentará de tal maneira que a escassa largura de banda disponível não será suficiente para abranger os objetivos pretendidos. O Relatório Anual de 2018 sobre a Internet da Cisco prevê que até 2023 haverá quase 30 bilhões de dispositivos capazes de comunicação sem fio. Devido ao aumento exponencial de serviços e dispositivos, os desafios sobre a capacidade de dados da rede e o udo eficiente dos recursos de rádio serão maiores que nunca. Por estes motivos, a necessidade de soluções para estas lacunas é enorme. Tanto a capacidade da rede e o uso eficiente do espectro de frequências estão relacionados ao tamanho da célula e à proximidade dos usuários com o ponto de acesso da célula. Ao encurtar a distância entre o transmissor e o recetor ocorre um melhoramento destes dois aspetos da rede. Este é o principal conceito na implementação de redes heterogéneas, HetNets, que são compostas por diversas células pequenas que coexistem na área de uma macro célula convencional, diminuído a distância entre os utilizadores da célula e os pontos de acesso, garantindo uma melhor cobertura e taxa de dados mais elevadas. No entanto, o potencial das HatNets não vem sem nenhum custo, pois estas redes sofrem consideravelmente de interferência entre as células. Embora nos últimos anos foram propostos alguns algoritmos que permitem a coexistência das células, a maioria destes foi só testado em simulações de software e não em plataformas em tempo real. Por esse motivo, esta dissertação de mestrado visa dar o primeiro passo na implementação e a avaliação de uma técnica de mitigação de interferência em hardware. Mais especificamente no cenário de downlink entre uma estação base de uma macro célula, um utilizador primário da macro célula e um utilizador secundário de uma célula pequena, com o principal objetivo de cancelar a interferência que a estação base possa fazer ao utilizador secundário. O estudo foi realizado utilizando a ferramenta System Generator DSP, que é uma ferramenta que gera código para hardware a partir de esquemáticos criados na mesma. Esta ferramenta também oferece uma vasta gama de blocos que ajudam a criação, e fundamentalmente, a simulação e o estudo do sistema a implementar antes de ser traduzido para hardware. Os resultados obtidos neste trabalho são uma fiel representação do comportamento do sistema implementado. O quais podem ser utilizados para uma futura aplicação para FPGA.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore