949 research outputs found

    Data transmission techniques for short-range optical fiber and wireless communication links

    Get PDF

    Implications of Implementing HDTV Over Digital Subscriber Line Networks

    Get PDF
    This thesis addresses the different challenges a telecommunications company would face when trying to implement an HDTV video service over a Digital Subscriber Line (DSL) connection. Each challenge is discussed in detail and a technology, protocol, or method is suggested to overcome that particular challenge. One of the biggest challenges is creating a network architecture that can provide enough bandwidth to support video over a network that was originally designed for voice traffic. The majority of the network connections to a customer premises in a telephony network consists of a copper pair. This type of connection is not optimal for high bandwidth services. This limitation can be overcome using Gigabit Ethernet (GE) over fiber in the core part of the network and VDSL2 in the access part of the network. For the purposes of this document, the core portion of the network is considered to be an area equal to several counties or approximately 50 miles in radius. The core network starts at the primary central office (CO) and spreads out to central offices in suburbs and small towns. The primary central office is a central point in the telecom operator\u27s network. Large trunks are propagated from the primary central office to smaller central offices making up the core network. The access portion of the network is considered to be an area within a suburb or small town from the central office to a subscriber\u27s home. Appendix A, located on page 60, contains a network diagram illustrating the scope of each of the different portions of the network. Considerations must also be given for the internal network to the residence such as category 5 (Cat5) cable or higher grade and network equipment that can provide up to 30 Megabits per second (Mbps) connections or throughput. The equipment in the telecommunications network also plays a part in meeting the challenge of 30 Mbps bandwidth. GE switches should be used with single mode fiber optic cable in the core part of the network. Digital Subscriber Line Access Multiplexers (DSLAM) with the capability to filter Internet Group Management Protocol (IGMP) messages should be used in the access part of the network to facilitate bandwidth utilization. Placement of this equipment and how the data is aggregated is another issue to consider when implementing HDTV service. Another major challenge facing the implementation of HDTV over DSL networks is controlling quality of service (QoS) throughout the network. Class of Service (CoS) and Differentiated Services (DiffServ) is a method of QoS that would enable video packets to have a higher priority and less delay than other data packets. The consumer could have data, video, and voice traffic all over the same DSL connection. Data, video and voice packets would need to have a different priority in order to maintain appropriate QoS levels for each service. The use of advanced technology in video encoding will be essential to the success of the video service. MPEG-2, MPEG-4, and Windows Media 9 are just a few of the video encoding technologies that could be used to reduce the necessary bandwidth for HDTV. The advancement of this technology is essential to allow telecommunications providers to offer HDTV. Another challenge for the telecom operator concerns the security of the network and service after implementation. Theft of service will be another area that the telecomm operator will be forced to resolve. The cable operators currently face this issue and lose millions of dollars in revenue. Authentication, IP filtering and MAC address blocking are a few possible solutions to this problem

    Multimedia Traffic over Wireless and Satellite Networks

    Get PDF
    • …
    corecore