386 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Computing on the Edge of the Network

    Get PDF
    Um Systeme der fünften Generation zellularer Kommunikationsnetze (5G) zu ermöglichen, sind Energie effiziente Architekturen erforderlich, die eine zuverlässige Serviceplattform für die Bereitstellung von 5G-Diensten und darüber hinaus bieten können. Device Enhanced Edge Computing ist eine Ableitung des Multi-Access Edge Computing (MEC), das Rechen- und Speicherressourcen direkt auf den Endgeräten bereitstellt. Die Bedeutung dieses Konzepts wird durch die steigenden Anforderungen von rechenintensiven Anwendungen mit extrem niedriger Latenzzeit belegt, die den MEC-Server allein und den drahtlosen Kanal überfordern. Diese Dissertation stellt ein Berechnungs-Auslagerungsframework mit Berücksichtigung von Energie, Mobilität und Anreizen in einem gerätegestützten MEC-System mit mehreren Benutzern und mehreren Aufgaben vor, das die gegenseitige Abhängigkeit der Aufgaben sowie die Latenzanforderungen der Anwendungen berücksichtigt.To enable fifth generation cellular communication network (5G) systems, energy efficient architectures are required that can provide a reliable service platform for the delivery of 5G services and beyond. Device Enhanced Edge Computing is a derivative of Multi-Access Edge Computing (MEC), which provides computing and storage resources directly on the end devices. The importance of this concept is evidenced by the increasing demands of ultra-low latency computationally intensive applications that overwhelm the MEC server alone and the wireless channel. This dissertation presents a computational offloading framework considering energy, mobility and incentives in a multi-user, multi-task device-based MEC system that takes into account task interdependence and application latency requirements

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching
    corecore