603 research outputs found

    Joint scheduling and coding for low in-order delivery delay over lossy paths with delayed feedback

    Get PDF
    We consider the transmission of packets across a lossy end-to-end network path so as to achieve low in-order delivery delay. This can be formulated as a decision problem, namely deciding whether the next packet to send should be an information packet or a coded packet. Importantly, this decision is made based on delayed feedback from the receiver. While an exact solution to this decision problem is challenging, we exploit ideas from queueing theory to derive scheduling policies based on prediction of a receiver queue length that, while suboptimal, can be efficiently implemented and offer substantially better performance than state of the art approaches. We obtain a number of useful analytic bounds that help characterise design trade-offs and our analysis highlights that the use of prediction plays a key role in achieving good performance in the presence of significant feedback delay. Our approach readily generalises to networks of paths and we illustrate this by application to multipath trans port scheduler design.This work has been supported by the Spanish Government (Ministerio de EconomĂ­a y Competitividad, Fondo Europeo de Desarrollo Regional, FEDER) by means of the project ADVICE (TEC2015-71329-C2-1-R)

    Enhanced transport protocols for real time and streaming applications on wireless links

    Full text link
    Real time communications have, in the last decade, become a highly relevant component of Internet applications and services, with both interactive communications and streamed content being used in developed and developing countries alike. Due to the proliferation of mobile devices, wireless media is becoming the means of transmitting a large part of this increasingly important real time communications traffic. Wireless has also become an important technology in developing countries, with satellite communications being increasingly deployed for traffic backhaul and ubiquitous connection to the Internet. A number of issues need to be addressed in order to have an acceptable service quality for real time communications in wireless environments. In addition to this, the availability of multiple wireless interfaces on mobile devices presents an opportunity to improve and further exacerbates the issues already present on single wireless links. Therefore in this thesis, we consider improvements to transport protocols for real time communications and streaming services to address these problems and we provide the following contributions. To deal with wireless link issues of errors and delay, we propose two enhancements. First, an improvement technique for Datagram Congestion Control Protocol CCID4 for long delay wireless (e.g. satellite) links, demonstrating significant performance improvements for Voice over IP applications. To deal with link errors, we have proposed, implemented and evaluated an erasure coding based packet error correction approach for Concurrent Multipath Transfer extension of Stream Control Transport Protocol data transport over multiple wireless paths. We have identified packet reordering as a major cause of performance degradation in both single and multi-path transport protocols for real time communications and media streaming. We have proposed a dynamically resizable buffer based solution to mitigate this problem within the DCCP protocol. For improving the performance of multi-path transport protocols over dissimilar network paths, we have proposed a delay aware packet scheduling scheme, which significantly improves the performance of multimedia and bulk data transfer with CMT-SCTP in heterogeneous multi-path network scenarios. Finally, we have developed a tool for online streaming video quality evaluation experiments, comprising a real-time cross-layer video streaming technique implemented within an open-source H.264 video encoder tool called x264

    Analysis and simulation of feedback in network coded transmission

    Get PDF
    In questa tesi si propongono due protocolli di trasmissione multi-interfaccia, entrambi basati sul Network Coding, e studiamo un schema di feedback compatibile con questi e che permetta di sfruttare le proprietĂ  di questo schema di codifica. Inoltre questi protocolli vengono implementati in un simulatore in linguaggio Python, e i risultati vengono ricavati tramite un'estensiva campagna di simulazioni, specialmente riguardo a overhead e feedbacks

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users
    • 

    corecore