921 research outputs found

    Dynamic Radio Cooperation for Downlink Cloud-RANs with Computing Resource Sharing

    Full text link
    A novel dynamic radio-cooperation strategy is proposed for Cloud Radio Access Networks (C-RANs) consisting of multiple Remote Radio Heads (RRHs) connected to a central Virtual Base Station (VBS) pool. In particular, the key capabilities of C-RANs in computing-resource sharing and real-time communication among the VBSs are leveraged to design a joint dynamic radio clustering and cooperative beamforming scheme that maximizes the downlink weighted sum-rate system utility (WSRSU). Due to the combinatorial nature of the radio clustering process and the non-convexity of the cooperative beamforming design, the underlying optimization problem is NP-hard, and is extremely difficult to solve for a large network. Our approach aims for a suboptimal solution by transforming the original problem into a Mixed-Integer Second-Order Cone Program (MI-SOCP), which can be solved efficiently using a proposed iterative algorithm. Numerical simulation results show that our low-complexity algorithm provides close-to-optimal performance in terms of WSRSU while significantly outperforming conventional radio clustering and beamforming schemes. Additionally, the results also demonstrate the significant improvement in computing-resource utilization of C-RANs over traditional RANs with distributed computing resources.Comment: 9 pages, 6 figures, accepted to IEEE MASS 201

    Hybrid Scheduling/Signal-Level Coordination in the Downlink of Multi-Cloud Radio-Access Networks

    Full text link
    In the context of resource allocation in cloud-radio access networks, recent studies assume either signal-level or scheduling-level coordination. This paper, instead, considers a hybrid level of coordination for the scheduling problem in the downlink of a multi-cloud radio-access network, as a means to benefit from both scheduling policies. Consider a multi-cloud radio access network, where each cloud is connected to several base-stations (BSs) via high capacity links, and therefore allows joint signal processing between them. Across the multiple clouds, however, only scheduling-level coordination is permitted, as it requires a lower level of backhaul communication. The frame structure of every BS is composed of various time/frequency blocks, called power-zones (PZs), and kept at fixed power level. The paper addresses the problem of maximizing a network-wide utility by associating users to clouds and scheduling them to the PZs, under the practical constraints that each user is scheduled, at most, to a single cloud, but possibly to many BSs within the cloud, and can be served by one or more distinct PZs within the BSs' frame. The paper solves the problem using graph theory techniques by constructing the conflict graph. The scheduling problem is, then, shown to be equivalent to a maximum-weight independent set problem in the constructed graph, in which each vertex symbolizes an association of cloud, user, BS and PZ, with a weight representing the utility of that association. Simulation results suggest that the proposed hybrid scheduling strategy provides appreciable gain as compared to the scheduling-level coordinated networks, with a negligible degradation to signal-level coordination

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author
    • …
    corecore