254 research outputs found

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Simultaneous Wireless Information and Power Transfer for Decode-and-Forward Multi-Hop Relay Systems in Energy-Constrained IoT Networks

    Full text link
    This paper studies a multi-hop decode-and-forward (DF) simultaneous wireless information and power transfer (SWIPT) system where a source sends data to a destination with the aid of multi-hop relays which do not depend on an external energy source. To this end, we apply power splitting (PS) based SWIPT relaying protocol so that the relays can harvest energy from the received signals from the previous hop to reliably forward the information of the source to the destination. We aim to solve two optimization problems relevant to our system model. First, we minimize the transmit power at the source under the individual quality-of-service (QoS) threshold constraints of the relays and the destination nodes by optimizing PS ratios at the relays. The second is to maximize the minimum system achievable rate by optimizing the PS ratio at each relay. Based on convex optimization techniques, the globally optimal PS ratio solution is obtained in closed-form for both problems. By setting the QoS threshold constraint the same for each node for the source transmit power problem, we discovered that either the minimum source transmit power or the maximum system throughput can be found using the same approach. Numerical results demonstrate the superiority of the proposed optimal SWIPT PS design over conventional fixed PS ratio schemes.Comment: 14 pages, 14 figures, Accepted for Publication in IEEE Internet of Things Journa

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    IEEE Access Special Section Editorial: Wirelessly Powered Networks, and Technologies

    Get PDF
    Wireless Power Transfer (WPT) is, by definition, a process that occurs in any system where electrical energy is transmitted from a power source to a load without the connection of electrical conductors. WPT is the driving technology that will enable the next stage in the current consumer electronics revolution, including battery-less sensors, passive RF identification (RFID), passive wireless sensors, the Internet of Things and 5G, and machine-to-machine solutions. WPT-enabled devices can be powered by harvesting energy from the surroundings, including electromagnetic (EM) energy, leading to a new communication networks paradigm, the Wirelessly Powered Networks
    corecore