3,038 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    Time allocation optimization and trajectory design in UAV-assisted energy and spectrum harvesting network

    Get PDF
    The scarcity of energy resources and spectrum resources has become an urgent problem with the exponential increase of communication devices. Meanwhile, unmanned aerial vehicle (UAV) is widely used to help communication network recently due to its maneuverability and flexibility. In this paper, we consider a UAV-assisted energy and spectrum harvesting (ESH) network to better solve the spectrum and energy scarcity problem, where nearby secondary users (SUs) harvest energy from the base station (BS) and perform data transmission to the BS, while remote SUs harvest energy from both BS and UAV but only transmit data to UAV to reduce the influence of near-far problem. We propose an unaligned time allocation scheme (UTAS) in which the uplink phase and downlink phase of nearby SUs and remote SUs are unaligned to achieve more flexible time schedule, including schemes (a) and (b) in remote SUs due to the half-duplex of energy harvesting circuit. In addition, maximum throughput optimization problems are formulated for nearby SUs and remote SUs respectively to find the optimal time allocation. The optimization problem can be divided into three cases according to the relationship between practical data volume and theoretical throughput to avoid the waste of time resource. The expressions of optimal energy harvesting time and data transmission time of each node are derived. Lastly, a successive convex approximation based iterative algorithm (SCAIA) is designed to get the optimal UAV trajectory in broadcast mode. Simulation results show that the proposed UTAS can achieve better performance than traditional time allocation schemes

    Ieee access special section editorial: Cloud and big data-based next-generation cognitive radio networks

    Get PDF
    In cognitive radio networks (CRN), secondary users (SUs) are required to detect the presence of the licensed users, known as primary users (PUs), and to find spectrum holes for opportunistic spectrum access without causing harmful interference to PUs. However, due to complicated data processing, non-real-Time information exchange and limited memory, SUs often suffer from imperfect sensing and unreliable spectrum access. Cloud computing can solve this problem by allowing the data to be stored and processed in a shared environment. Furthermore, the information from a massive number of SUs allows for more comprehensive information exchanges to assist the
    • …
    corecore