422 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior

    Get PDF
    Abstract—Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, inter- active motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behaviour as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behaviour, from prediction of individual pedestrians’ likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behaviour, high-level psychological and social modelling of pedestrian behaviour still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behaviour, but much work is still needed to translate them into quantitative algorithms for practical AV control

    Pedestrian Trajectory Prediction in Pedestrian-Vehicle Mixed Environments: A Systematic Review

    Full text link
    Planning an autonomous vehicle's (AV) path in a space shared with pedestrians requires reasoning about pedestrians' future trajectories. A practical pedestrian trajectory prediction algorithm for the use of AVs needs to consider the effect of the vehicle's interactions with the pedestrians on pedestrians' future motion behaviours. In this regard, this paper systematically reviews different methods proposed in the literature for modelling pedestrian trajectory prediction in presence of vehicles that can be applied for unstructured environments. This paper also investigates specific considerations for pedestrian-vehicle interaction (compared with pedestrian-pedestrian interaction) and reviews how different variables such as prediction uncertainties and behavioural differences are accounted for in the previously proposed prediction models. PRISMA guidelines were followed. Articles that did not consider vehicle and pedestrian interactions or actual trajectories, and articles that only focused on road crossing were excluded. A total of 1260 unique peer-reviewed articles from ACM Digital Library, IEEE Xplore, and Scopus databases were identified in the search. 64 articles were included in the final review as they met the inclusion and exclusion criteria. An overview of datasets containing trajectory data of both pedestrians and vehicles used by the reviewed papers has been provided. Research gaps and directions for future work, such as having more effective definition of interacting agents in deep learning methods and the need for gathering more datasets of mixed traffic in unstructured environments are discussed.Comment: Published in IEEE Transactions on Intelligent Transportation System

    Understanding Vehicular Traffic Behavior from Video: A Survey of Unsupervised Approaches

    Full text link
    Recent emerging trends for automatic behavior analysis and understanding from infrastructure video are reviewed. Research has shifted from high-resolution estimation of vehicle state and instead, pushed machine learning approaches to extract meaningful patterns in aggregates in an unsupervised fashion. These patterns represent priors on observable motion, which can be utilized to describe a scene, answer behavior questions such as where is a vehicle going, how many vehicles are performing the same action, and to detect an abnormal event. The review focuses on two main methods for scene description, trajectory clustering and topic modeling. Example applications that utilize the behavioral modeling techniques are also presented. In addition, the most popular public datasets for behavioral analysis are presented. Discussion and comment on future directions in the field are also provide

    Heterogeneous Trajectory Forecasting via Risk and Scene Graph Learning

    Full text link
    Heterogeneous trajectory forecasting is critical for intelligent transportation systems, while it is challenging because of the difficulty for modeling the complex interaction relations among the heterogeneous road agents as well as their agent-environment constraint. In this work, we propose a risk and scene graph learning method for trajectory forecasting of heterogeneous road agents, which consists of a Heterogeneous Risk Graph (HRG) and a Hierarchical Scene Graph (HSG) from the aspects of agent category and their movable semantic regions. HRG groups each kind of road agents and calculates their interaction adjacency matrix based on an effective collision risk metric. HSG of driving scene is modeled by inferring the relationship between road agents and road semantic layout aligned by the road scene grammar. Based on this formulation, we can obtain an effective trajectory forecasting in driving situations, and superior performance to other state-of-the-art approaches is demonstrated by exhaustive experiments on the nuScenes, ApolloScape, and Argoverse datasets.Comment: Submitted to IEEE Transactions on Intelligent Transportation Systems, 202
    • …
    corecore