886 research outputs found

    Energy-Efficient Optimization for Wireless Information and Power Transfer in Large-Scale MIMO Systems Employing Energy Beamforming

    Full text link
    In this letter, we consider a large-scale multiple-input multiple-output (MIMO) system where the receiver should harvest energy from the transmitter by wireless power transfer to support its wireless information transmission. The energy beamforming in the large-scale MIMO system is utilized to address the challenging problem of long-distance wireless power transfer. Furthermore, considering the limitation of the power in such a system, this letter focuses on the maximization of the energy efficiency of information transmission (bit per Joule) while satisfying the quality-of-service (QoS) requirement, i.e. delay constraint, by jointly optimizing transfer duration and transmit power. By solving the optimization problem, we derive an energy-efficient resource allocation scheme. Numerical results validate the effectiveness of the proposed scheme.Comment: 4 pages, 3 figures. IEEE Wireless Communications Letters 201

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    IEEE Access Special Section Editorial: Wirelessly Powered Networks, and Technologies

    Get PDF
    Wireless Power Transfer (WPT) is, by definition, a process that occurs in any system where electrical energy is transmitted from a power source to a load without the connection of electrical conductors. WPT is the driving technology that will enable the next stage in the current consumer electronics revolution, including battery-less sensors, passive RF identification (RFID), passive wireless sensors, the Internet of Things and 5G, and machine-to-machine solutions. WPT-enabled devices can be powered by harvesting energy from the surroundings, including electromagnetic (EM) energy, leading to a new communication networks paradigm, the Wirelessly Powered Networks

    Dynamic Wireless Information and Power Transfer Scheme for Nano-Empowered Vehicular Networks

    Get PDF
    In this paper, we investigate the wireless power transfer and energy-efficiency (EE) optimization problem for nano-centric vehicular networks operating over the terahertz band. The inbody nano-sensors harvest energy from a power station via radio-frequency signal and then use the harvested energy to transmit data to the sink node. By considering the properties of terahertz band (i.e., sensitivity to distance and frequency over the communication path), we adopt the Brownian motion model to develop a time-variant terahertz channel model and to describe the mobility of the nano-sensors. Thus, based on the channel model and energy resources, we further develop a long-term EE optimization problem. The EE optimization is further converted into a series of energy-efficient resource allocation problems over the time slots via equivalent transformation method. The resource allocation problem for each timeslot, which is formulated as a mixed integer nonlinear programming (MINLP), is solved based on the particle swarm optimization (PSO) method. In addition, a dynamic PSO-based EE optimization (DPEEO) algorithm is developed to obtain the sub-optimal solution for the EE optimization problem. By exploiting the special structure of the reformulated problem, an improved DPEEO algorithm, is presented which can handle the problem’s constraints quite well, decreases the research space, and greatly reduces the length of the convergence time. Simulation results validate the theoretical analysis of our system

    Joint energy harvesting time allocation and beamforming in two-way relaying network

    Get PDF
    Abstract. A two-way relaying system with amplify-and-forward technique, where relay stations (RSs) acquire the energy from transmission signal and interferences, is considered. The RSs use the energy to amplify the signal received from the transmitter and forward it to the receiver. Particularly, energy harvesting (EH) and time switching (TS) are deployed. Based on the TS architecture, we divide transmission time into two time slots, which are EH phase and information transmission (IT) phase. In the EH phase, the RSs harvest the energy from the received radio frequency (RF) signal. In the IT phase, the RSs process and forward the transmission signal to the destination by energy harvesting during the EH phase. From such a transmission scheme, we investigate the optimal time ratio of the EH and IT phase as well as the beamforming at RSs in order to acquire the sum rate maximization. Since the sum-rate maximization problem is nonconvex, we develop an iterative algorithm based on the majorization-minimization (MM) technique to solve the problem. Furthermore, we deployed two schemes to overcome the self-interference to see the efficiency of each scheme related to sum-rate performance. The results show that power transmission and a number of relay station have a major impact on the sum rate performance of the two-way relay system

    Spatial Throughput Maximization of Wireless Powered Communication Networks

    Full text link
    Wireless charging is a promising way to power wireless nodes' transmissions. This paper considers new dual-function access points (APs) which are able to support the energy/information transmission to/from wireless nodes. We focus on a large-scale wireless powered communication network (WPCN), and use stochastic geometry to analyze the wireless nodes' performance tradeoff between energy harvesting and information transmission. We study two cases with battery-free and battery-deployed wireless nodes. For both cases, we consider a harvest-then-transmit protocol by partitioning each time frame into a downlink (DL) phase for energy transfer, and an uplink (UL) phase for information transfer. By jointly optimizing frame partition between the two phases and the wireless nodes' transmit power, we maximize the wireless nodes' spatial throughput subject to a successful information transmission probability constraint. For the battery-free case, we show that the wireless nodes prefer to choose small transmit power to obtain large transmission opportunity. For the battery-deployed case, we first study an ideal infinite-capacity battery scenario for wireless nodes, and show that the optimal charging design is not unique, due to the sufficient energy stored in the battery. We then extend to the practical finite-capacity battery scenario. Although the exact performance is difficult to be obtained analytically, it is shown to be upper and lower bounded by those in the infinite-capacity battery scenario and the battery-free case, respectively. Finally, we provide numerical results to corroborate our study.Comment: 15 double-column pages, 8 figures, to appear in IEEE JSAC in February 2015, special issue on wireless communications powered by energy harvesting and wireless energy transfe

    Q-learning Channel Access Methods for Wireless Powered Internet of Things Networks

    Get PDF
    The Internet of Things (IoT) is becoming critical in our daily life. A key technology of interest in this thesis is Radio Frequency (RF) charging. The ability to charge devices wirelessly creates so called RF-energy harvesting IoT networks. In particular, there is a hybrid access point (HAP) that provides energy in an on-demand manner to RF-energy harvesting devices. These devices then collect data and transmit it to the HAP. In this respect, a key issue is ensuring devices have a high number of successful transmissions. There are a number of issues to consider when scheduling the transmissions of devices in the said network. First, the channel gain to/from devices varies over time. This means the efficiency to deliver energy to devices and to transmit the same amount of data is different over time. Second, during channel access, devices are not aware of the energy level of other devices nor whether they will transmit data. Third, devices have non-causal knowledge of their energy arrivals and channel gain information. Consequently, they do not know whether they should delay their transmissions in hope of better channel conditions or less contention in future time slots or doing so would result in energy overflow
    • …
    corecore