4,814 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Previous Messages Provide the Key to Achieve Shannon Capacity in a Wiretap Channel

    Full text link
    We consider a wiretap channel and use previously transmitted messages to generate a secret key which increases the secrecy capacity. This can be bootstrapped to increase the secrecy capacity to the Shannon capacity without using any feedback or extra channel while retaining the strong secrecy of the wiretap channel.Comment: Accepted for IEEE International Conference on Communications Workshop (ICC) 2013, Budapest, Hungary. arXiv admin note: text overlap with arXiv:1404.570

    Security and Energy-aware Collaborative Task Offloading in D2D communication

    Get PDF
    Device-to-device (D2D) communication technique is used to establish direct links among mobile devices (MDs) to reduce communication delay and increase network capacity over the underlying wireless networks. Existing D2D schemes for task offloading focus on system throughput, energy consumption, and delay without considering data security. This paper proposes a Security and Energy-aware Collaborative Task Offloading for D2D communication (Sec2D). Specifically, we first build a novel security model, in terms of the number of CPU cores, CPU frequency, and data size, for measuring the security workload on heterogeneous MDs. Then, we formulate the collaborative task offloading problem that minimizes the time-average delay and energy consumption of MDs while ensuring data security. In order to meet this goal, the Lyapunov optimization framework is applied to implement online decision-making. Two solutions, greedy approach and optimal approach, with different time complexities, are proposed to deal with the generated mixed-integer linear programming (MILP) problem. The theoretical proofs demonstrate that Sec2D follows a [O(1∕V),O(V)] energy-delay tradeoff. Simulation results show that Sec2D can guarantee both data security and system stability in the collaborative D2D communication environment

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Reliable and Secure Drone-assisted MillimeterWave Communications

    Get PDF
    The next generation of mobile networks and wireless communication, including the fifth-generation (5G) and beyond, will provide a high data rate as one of its fundamental requirements. Providing high data rates can be accomplished through communication over high-frequency bands such as the Millimeter-Wave(mmWave) one. However, mmWave communication experiences short-range communication, which impacts the overall network connectivity. Improving network connectivity can be accomplished through deploying Unmanned Ariel Vehicles(UAVs), commonly known as drones, which serve as aerial small-cell base stations. Moreover, drone deployment is of special interest in recovering network connectivity in the aftermath of disasters. Despite the potential advantages, drone-assisted networks can be more vulnerable to security attacks, given their limited capabilities. This security vulnerability is especially true in the aftermath of a disaster where security measures could be at their lowest. This thesis focuses on drone-assisted mmWave communication networks with their potential to provide reliable communication in terms of higher network connectivity measures, higher total network data rate, and lower end-to-end delay. Equally important, this thesis focuses on proposing and developing security measures needed for drone-assisted networks’ secure operation. More specifically, we aim to employ a swarm of drones to have more connection, reliability, and secure communication over the mmWave band. Finally, we target both the cellular 5Gnetwork and Ad hoc IEEE802.11ad/ay in typical network deployments as well as in post-disaster circumstances
    • …
    corecore